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Solved Homework 
 
 If the approximate energy is given by 
 
 <H> = 3a4 – 4a3 –36a2 + 10  
 
where a is a variational parameter, local minima and maxima of the energy will 
correspond to stationary points of <H> with respect to a, i.e., points where 
 

 d H
da

= 0   

 
Setting the derivative equal to zero gives 
 

 0 = 12a3 – 12a2 –72a  
 
which may be simplified as 
 

 0 = a(a2 – a – 6) = a(a –3)(a + 2)  
 
The three solutions to this cubic equation are a = –2, 0, and 3. It is a trivial matter to plug 
these values back into the expression for the energy and find that the corresponding 
values of <H> = E are –54, 10, and –219. Analysis of the sign of the second derivative of 
<H> with respect to a indicates these values to be a local minimum, a local maximum, 
and a local minimum, respectively (although their characters are obvious in this case). 
 
 The variational principle states that our lowest energy (–219) will be an upper 
bound to the true lowest energy (which would be the ground-state energy), so the highest 
energy the system can possibly have in its ground state is –219 (in whatever units a is 
expressed). 
 
 
Some Simple Variational Calculations 
 
 Last lecture, we considered the variational principle in the context of basis 
functions and their uses for molecular calculations. The variational approach provides a 
prescription for computing molecular orbitals as linear combinations of atomic orbitals, 
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where the coefficients of the linear combinations are the variational parameters subject to 
optimization. However, to better appreciate some of the concepts associated with the 
variational principle, let’s now take a step back and focus on a vastly simpler system with 
only a single variational parameter. 
 
 Consider the ground state for a particle having mass 1 a.u. in a box of length L = 1 
a.u. We know the eigenfunction and eigenvalue (in a.u.) for this particle-in-a-box system 
exactly, namely 
 

 

Ψ1 x( ) = 2 sin πx( ) 0 ≤ x ≤ 1

E1 =
π2

2  (18-1) 
 
 Now, let us imagine that we had no idea how to derive the correct eigenfunction. 
But, we certainly imagine that the function should have no nodes (it’s the ground state, 
after all), and we also know from the boundary conditions it must be zero at both ends of 
the box. One very simple choice for a trial function might be 
 
 ξ x( ) = x 1− x( )  (18-2) 
 
This function has the correct behavior at x = 0 and x = 1 and it is everywhere positive in 
between. Of course, there’s no variational parameter in ξ, so there is nothing there to 
optimize. A simple way to introduce such a parameter is to choose instead 
 
 ξ x;a( ) = xa 1− x( ) (18-3) 
 
where a is the variational parameter to be optimized. The optimization condition 
minimizes the energy of the trial wave function, which from the variational principle 
establishes an upper bound on the “true” energy. The variational condition is 
 

 
0 =

d
da

ξ x;a( )H ξ x;a( )
ξ x;a( ) ξ x;a( )
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'  (18-4) 

 
 Recall that for the particle in a box, H = T (there is no potential energy component 
of the Hamiltonian), so we have three steps in the optimization of a. Step 1 is to evaluate 
the integral in the numerator of eq. 18-4, step 2 is to evaluate the square modulus of ξ in 
the denominator of eq. 18-4, and step 3 is to take the derivative of the ratio and determine 
the value of a that causes that derivative to be zero (and thereby minimizes the energy). 
 
 So, let’s start with step 2, determining the square modulus of ξ. We have 
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ξ x;a( ) ξ x;a( ) = xa 1− x( )0
1
∫ xa 1 − x( )dx

= x2a0
1
∫ dx − 2 x2a+10

1
∫ dx + x 2a+20

1
∫ dx

=
x2a+1

2a +1 0

1

− 2 x
2a+2

2a + 2 0

1

+
x2a+3

2a + 3 0

1

=
1

2a +1
−

2
2a + 2

+
1

2a + 3

=
2

2a +1( ) 2a + 2( ) 2a + 3( )  (18-5) 
 
 Now, we will consider the expectation value of H, which is 
 

 ξ x;a( )H ξ x;a( ) = xa 1− x( ) −
1
2
d2

dx2
# 
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( 0

1
∫ xa 1 − x( )[ ]dx  (18-6) 

 
The second derivative of ξ with respect to x is 
 

 

d2

dx2
xa 1− x( )[ ] =

d
dx

d
dx

xa 1− x( )[ ]" 
# 
$ 

% 
& 
' 

=
d
dx

ax a−1 1 − x( ) − x a[ ]
= a a −1( )xa−2 1 − x( ) − axa−1 − axa−1

= a2 − a( )xa−2 − a2 + a( )xa−1  (18-7) 
 
Inserting this result into eq. 18-6 gives 
 

 

ξ x;a( )H ξ x;a( ) = −
a
2

a − 1( )x 2a−2dx0
1
∫ − 2ax2a−1dx + a +1( )x2adx0

1
∫0

1
∫[ ]

= −
a
2

a −1
2a −1

− 1+
a +1
2a +1

$ 
% 
& 

' 
( 
) 

=
a

2 2a − 1( ) 2a +1( )  (18-8) 
 
 So, we now have 
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ξ x;a( )H ξ x;a( )
ξ x;a( )ξ x;a( )

=

a
2 2a −1( ) 2a + 1( )

2
2a +1( ) 2a + 2( ) 2a + 3( )

=
2a3 + 5a2 + 3a

4a − 2  (18-9) 
 
We want the derivative of this expression with respect to a to be zero, so we have 
 

 

0 = d
da

2a3 + 5a2 +3a
4a− 2
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=
6a2 +10a+3( ) 4a− 2( )− 4 2a3 + 5a2 +3a( )

4a− 2( )2

=
16a3 +8a2 − 20a− 6
16a2 −16a+ 4

 (18-10) 

 
Thus, we need to find values of a that make the numerator of eq. 18-10 zero (and check 
to be sure that they do not make the denominator simultaneously zero, since that result 
would be undefined). While there is no completely general way to solve the cubic 
equation in the numerator, trial and error gives a = 1.043 to better than 1% accuracy. 
 
 Thus, within the limits of our functional form, the best ξ is 
 
 ξ x;aopt( ) = x1.043 1− x( )  (18-11) 
 
We can use this value of a in eq. 18-9 to arrive at 
 

 
ξ x;a( ) H ξ x;a( )
ξ x;a( ) ξ x;a( )

=

1.043
2 2.086−1( ) 2.086+1( )

2
2.086+1( ) 2.086+ 2( ) 2.086+3( )

= 4.99

 (18-12) 

 
So, the upper bound on the ground state energy is 4.99 a.u. How does this compare with 
the exact result? If we reduce E from eq. 18-1 to a decimal, it is 4.93 a.u. Our error with 
this functional form for ξ is 0.06 a.u., or just a bit more than 1%! 
 
 How does ξ do for a different property? Consider <x> evaluated for ξ. That is 
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ξ x;a( ) x ξ x;a( ) = N 2 xa 1− x( ) x( )
0

1
∫ xa 1− x( )#$ %&dx

= 32.066 x2a+1
0

1
∫ dx − 2 x2a+2

0

1
∫ dx + x2a+3

0

1
∫ dx( )

= 32.066 1
2a+ 2

−
2

2a+3
+

1
2a+ 4

'

(
)

*

+
,

= 32.066 1
2.086+ 2

−
2

2.086+3
+

1
2.086+ 4

'

(
)

*

+
,

= 0.507

 (18-13) 

 
where N is the normalization constant for ξ (the square root of one over the square 
modulus computed in eq. 18-5). Note that the exact answer for the particle in a box is 0.5 
for <x>—the middle of the box. So, our wave function ξ is a bit skewed to the right, and 
our error is about 1%. 
 
 We might have considered an alternative trial wave function, namely 
 
 ξ x;a( ) = xa 1− x2( )  (18-14) 
 
By following a procedure identical to the one above (but with the math not shown), one 
arrives at an optimal value for a of 0.862, and with this value one computes <H> = 5.15. 
This energy is in error by 0.22 a.u., i.e., it has increased the error compared to eq. 18-11 
by almost a factor of 4. For <x>, the prediction using the form for ξ of eq. 18-14 is 0.52. 
So, this newer trial function skews a bit further to the right of the center of the box, but 
the additional error is not as large. This is a fairly typical situation:  just because you 
affect the trial function for purposes of computing the energy does not necessarily imply 
that you will see similar changes in other expectation values. It is a reasonable 
assumption that one expectation value will improve or degrade similarly to the energy, 
but it is not guaranteed. Plots of the two approximate wave functions and the exact wave 
function are provided below, and illustrate the skewness that shows up in <x>. The 
closeness of both approximate wave functions to the exact one is apparent, however. 
 
 To wrap this up, given our results so far, it seems as though one obvious thing to 
do might be to define a new trial function according to 
 
 ξ x;a,b( ) = xa 1− xb( )  (18-15) 
 
where b seems likely to be less than one. With this trial function, the variational condition 
would require  
 

 
0 =

d
da

ξ x;a,b( )H ξ x;a,b( )
ξ x;a,b( ) ξ x;a,b( )
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d
db

ξ x;a,b( )H ξ x;a,b( )
ξ x;a,b( )ξ x;a,b( )
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'  (18-16) 
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Following a protocol just like that above, we could generate these two equations in two 
unknowns and solve for a and b. The exercise is left for the interested student... To make 
connection with the previous lecture, however, note that each new parameter in the trial 
function introduces a new derivative equation, so that one inevitably ends up with N 
equations in N unknowns where the number of parameters is N. The secular equation is 
simply the use of linear algebra to solve these equations for the LCAO approach. 
 
 
The Helium Atom 
 
 Helium has a nucleus with two protons and two electrons. The proper non-
relativistic electronic Hamiltonian in a.u. is thus 
 

 H = −
1
2
∇1
2 −

1
2
∇2
2 −

2
r1
−
2
r2
+
1
r12  (18-17) 

 
where the terms on the r.h.s. correspond to, in order, the kinetic energy of electron 1, the 
kinetic energy of electron 2, the attraction of electron 1 to the nucleus (r1 is the distance 
between the nucleus and electron 1), the attraction of the electron 2 to the nucleus (r2 is 
the distance between the nucleus and electron 2), and the repulsion between electron 1 
and electron 2 (r12 is the distance between the two electrons). Alas, the Schrödinger 
equation involving the Hamiltonian of eq. 18-17 has no analytic solutions. So, perforce 
we are left to try and come up with trial wave functions! 
 
 One seemingly reasonable wave function might be to assume that, as a first 
approximation, we can ignore the interelectronic repulsion term (the last term on the r.h.s. 
of eq. 18-17). If we do that, the remaining Hamiltonian is simply the sum of the usual 
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one-electron Hamiltonian for electron 1 and for electron 2. That is, an exact wave 
function would be 
 
 Ψ 1,2( ) = ψ 1( )ψ 2( )  (18-18) 
 
where ψ is a usual one-electron hydrogenic orbital. For the ground state of He, we’d 
assume each ψ was a 1s orbital. If we then evaluate <Ψ|H|Ψ> for the correct Hamiltonian 
of eq. 18-17 using the approximate wave function of eq. 18-18 (lots of extraordinarily 
tedious calculus—not shown) we obtain an energy of –2.75 a.u. The exact answer 
(determined through heroic variational calculations, since the solution cannot be obtained 
analytically) is –2.90 a.u. (experiment gives the same value, of course). So, the error is 
0.15 a.u. If that number seems small, we should perhaps convert to a more intuitive set of 
units. That is an error of 94.1 kcal mol−1 in the total electronic energy—rather a lot. 
 
 One way to improve this calculation is to maintain the functional form of eq. 18-
18, but instead of the usual s orbital wave function that has the nuclear charge in the 
exponential, i.e.,  
 

 ψ100 r,θ,φ( ) = Z3/ 2

π
e−Zr  (18-19) 

 
we treat the nuclear charge itself as a variational parameter. The physical reason for such 
an approach is that we may think of the second electron as “getting in the way” of the 
first electron seeing the full nuclear charge. Thus, we take as our one-electron wave 
function 
 

 ψ100 r,θ,φ( ) = η3/ 2

π
e−ηr  (18-20) 

 
where η is the variational parameter. Minimization of the energy with respect to this 
parameter gives η = 1.69 (reduced from 2, in keeping with our physical picture of why it 
varies) and an energy of –2.85 a.u. Thus, the error has been reduced by 67%! 
 
 With still more complicated functional forms and/or more flexibility in variational 
parameters, one can do still better. In the 1950s, He was pretty much solved, with 
energies accurate to 0.000 000 001 a.u. being obtained from variational expressions 
involving more than 1000 variational parameters. The wave functions themselves are not 
very intuitive, but they can, of course, be used in the evaluation of expectation values for 
other operators. 
 
 
 



  18-8 

Homework 
 
To be solved in class:   
 
Evaluate <px> for the ξ of eq. 18-11. What does the result mean? (Don’t forget to 
normalize ξ.) 
 
To be turned in for possible grading Mar. 11:   
 
On the interval 0 to 1, what is the square modulus (in terms of a and b) of the trial wave 
function in eq. 18-15? 


