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Solved Homework 
 
 We seek 
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where N is the normalization constant on ξ. We could do this the usual way (take the 
derivative, solve all the integrals), but just for fun, let’s do something more general. 
 
 Consider any real wave function of one dimension f. 
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where we have assumed without loss of generality that f is normalized over the 
integration interval. We can solve the integral using integration by parts. If we use 
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but, we know that a well-behaved wave function must go to zero at its integration 
endpoints, so the r.h.s. of the final equation is just 0. Thus, any real wave function has an 
expectation value of 0 for the momentum operator. We can think of this result as deriving 
from a superposition of left- and right-moving particle wave functions. 
 
 If you think about this more deeply, it should now be clear why only the the ml = 
0 wave functions of the spherical harmonics can be real:  they have no z component 
angular momentum. Those with positive or negative values of ml  are necessarily 
complex, so we can think of them as rotating, in some sense, either clockwise or 
counterclockwise, about appropriate axes. When we make linear combinations to get real 
wavefunctions, the expectation value of Lz necessarily becomes zero—because the wave 
functions are real—and the linear combinations are no longer eigenfunctions of Lz. 
 
 
Variational Calculations on the H Atom 
 
 As we did with the particle in a box, it is often helpful to consider a system where 
the answer is known exactly in order to evaluate the utility of different variational 
protocols. Let us now consider the hydrogen atom. The question in which we are 
interested is, what if we were to replace the exact 1s wave function 
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with a different functional dependence on r, namely 
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where N is the normalization constant and α is a variational constant. We can find N 
quickly from 
 

 

!1s r,",#;$( ) !1s r,", #;$( ) = 1

= N
2

e
%2$r2

r
2
drsin "d"d#

0

2&
'0

&
'0

(
'

= 4&N2 r
2
e
%2$r2

dr
0

(
'

= 4&N2
1

8$

&

2$

) 

* 
+ 

, 

- 
. 
1/ 2/ 

0 
1 
1 

2 

3 
4 
4 

 (19-3) 

 
The normalization constant is thus 
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 Our variational condition, given a normalized wave function is 
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so we need to evaluate the expectation values of the kinetic and potential energy 
operators. 
 
 So, let’s start with the kinetic energy operator. Recall that in spherical polar 
coordinates (and a.u.) we have 
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In this case, since the angular momentum of an s wave function is 0, we need only 
consider the r component. So, we have 
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where the second line reflects having taken the constants out front, and having integrated 
over θ and φ to get 4π. The remaining integral requires some care to evaluate. Remember 
that the d/dr operators only operate on the wave function, not on the trailing r2 that is 
simply part of the spherical integral volume element. So, first we must differentiate the 
exponential function once, then multiply by r2, then differentiate the product once again, 
then divide by r2, then finally the volume element can be included and we end up with 
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To simplify this, we may look in an integral table to find 
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So, we have 
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Remarkable how sweetly that simplified in the end, isn’t it? 
 
 Now we need to evaluate 
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where again the normalization factor and the 4π from the angular integrals have been 
brought out front. An integral table gives 
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Using this formula with eq. 19-11 gives 
 

 

!
2"

#
$ 
% 

& 
' 

3/ 2

4#( ) re
!2"r 2

0

(
) dr = !

2"

#
$ 
% 

& 
' 

3/ 2

4#( )
0!

2 • 2"
$ 
% 

& 
' 

= !2
2"

#

$ 
% 

& 
' 

1/2

 (19-13) 
 
 Putting it all together and taking the derivative with respect to α provides 
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This is equal to zero when α = 0.28294. Using this value of α gives <T> = 0.4244 a.u. 
and <V> = –0.8488 a.u. (note that this satisfies the virial theorem, since <V> = −2<T>) 
and thus <H> = −0.4244 a.u. The exact answer is –0.5 a.u., of course, so the error is 
about 15%. 
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 This is a fairly large error. The problem is that a Gaussian function is really rather 
different from a normal exponential. It fails to have a cusp at the nucleus, it fails to rise to 
as high an amplitude at the nucleus, and it drops off more rapidly as r gets large. The 
smaller amplitude near the nucleus (the positive charge attractor) reduces <V>. It also 
means the slope is smaller than in the exponential, so this reduces <T>, too, but since any 
effect on V is twice as big as on T by the virial theorem, the net effect is to reduce the 
magnitude of the binding energy. 
 
 
Linear Combinations of Gaussians 
 
 While a single gaussian does not do as well as the exact wave function for H, 
what about a linear combination of two gaussians, one being "tighter" (i.e., more peaked 
near the nucleus) and one being "looser"? We then have 
 

 

! 

"1s r,#,$;c1,%1,c2,%2( ) = c1
2%1
&

' 

( 
) 

* 

+ 
, 
3/4

e
-%1r

2

+ c2
2%2
&

' 

( 
) 

* 

+ 
, 
3/4

e
-%2r

2

 (19-15) 

 
We could treat both the c values and the α values all as variational coefficients, but that is 
a bit challenging for our purposes. Let's instead treat only the coefficients as variational 
parameters, and choose specific values for the two α exponents. In particular, we will 
choose α1 = 1.0 and α2 = 0.2. 
 
 Until we know the coefficients, we don't know the normalization, so we will have 
to evaluate not only <T> and <V> as above, but also <ψ|ψ>. Let's begin with the simplest 
evaluation, the overlap integral 
 



  19-6 

 

!1s !1s = 4"

c1
2 2

"

# 
$ 

% 
& 

3 / 2

e
'2r2

r
2
dr

0

(

)

+ 2c1c2
2

"

# 
$ 
% 
& 

3 / 4
0.4

"

# 
$ 

% 
& 

3 / 4

e
'1.2r 2

r
2
dr

0

(

)

+ c2
2 0.4

"

# 
$ 

% 
& 

3/ 2

e
'0.4r 2

r
2
dr

0

(

)

* 

+ 

, 

, 

, 

, 

, 
, 

- 

. 

/ 

/ 

/ 

/ 

/ 
/ 

= 4"

c1
2 2

"

# 
$ 

% 
& 

3 / 2
1

4 •2

# 
$ 

% 
& 
"

2

# 
$ 

% 
& 

1/ 2

+ 2c1c2
2

"

# 
$ 
% 
& 

3 / 4
0.4

"

# 
$ 

% 
& 

3 / 4
1

4 •1.2

# 
$ 

% 
& 

"

1.2

# 
$ 

% 
& 

1/2

+ c2
2 0.4

"

# 
$ 

% 
& 

3/ 2
1

4 • 0.4

# 
$ 

% 
& 

"

0.4

# 
$ 

% 
& 

1/ 2

* 

+ 

, 

, 

, 

, 

, 
, 

- 

. 

/ 

/ 

/ 

/ 

/ 
/ 

= c1
2 +1.2870c1c2 + c2

2

 (19-16) 

 
 In order to evaluate the remaining integrals, it is helpful to solve their generic 
forms and then plug in the appropriate values for α. For instance, for <T> evaluated over 
two different gaussians we have 
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Given our combination of two gaussians in each ψ, we will have four integrals that we 
might call (1,1), (1,0.2), (0.2,1) and (0.2,0.2) (note from the symmetry of eq. 19-17 that 
(1,0.2) and (0.2,1) must be equal—we could also have come to this conclusion from the 
turnover rule!). If we use eq. 19-17 and our chosen values for α we have 
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As a nice sanity check, note that the tighter gaussian (number 1, the one with the higher 
exponent) contributes the greater kinetic energy, because it has much more curvature. 
 
 Now let's turn to the nuclear attraction integrals. Again, it is simplest to solve the 
general case 
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Note again the symmetry of (1,2) and (2,1). The full evaluation using our chosen values 
for α gives 
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The sanity check here is that the terms involving gaussian 1 are more negative because 
this gaussian has larger amplitude near the nucleus. 
 
 So, we now have 
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The variational coefficients are the c values, so we now take the derivative of eq. 19-21 
with respect to each. We find that, irrespective of which derivative we take and set equal 
to zero, we end up with 
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One equation in two unknowns does not allow us to determine values for both 
coefficients c. However, we also have the normalization requirement 
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Now that we have two equations in two unknowns, we can solve to find c1 = 0.3221 and 
c2 = 0.7621. You can verify that this satisfies the normalization equation 19-23, and, if 
we plug these values into the expectation value for the Hamiltonian, we obtain an energy 
expectation value of −0.4827 a.u. Notice the enormous improvement over using a single 
gaussian function with an optimized exponent (which was −0.4244 a.u.)! 
 
 In essence, we are using the gaussian functions as a basis set to describe the exact 
function. If we take more extensive linear combinations with different exponents, we 
would expect to continue to do better. Indeed, taking a linear combination of 3 gaussians 
with exponents α equal to 2.22766, 0.405771, and 0.109818 provides a final wave 
function for which <H> = −0.4950—the error is now down to 1%. The graph on the next 
page illustrates how closely the sum of the 3 gaussian functions fits the exact hydrogenic 
wave function. The optimized coefficients in the figure caption can be determined in 
precisely the same fashion used above, except that one must keep track of more terms. 
Verification of the coefficient values is left as an exercise for the interested reader... 
 
 
Homework 
 
To be solved in class:   
 
Establish whether the virial theorem is satisfied for our optimized two-gaussian wave 
function. 
 
To be turned in for possible grading Mar. 10:   
 
Today’s in-class homework solution showed that the expectation value of the momentum 
operator for any real wave function must be zero. Why doesn’t the same proof hold for 
any complex wave function? 
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Figure Caption.  The radial behavior of various basis functions in atom-centered 

coordinates. In black is the exact hydrogen 1s wave function. The purple curve is the 

optimized sum of a set of one each tight, medium, and loose gaussian functions shown in 

red, green, and blue, respectively. The respective gaussian exponents α are 2.227660, 

0.405771, and 0.109818, and the associated contraction coefficients c are 0.14725, 

0.53266, and 0.45233. Note that from 0.5 to 4.0 a.u., the linear-combination wave 

function matches the exact one closely. However, near the origin there is a notable 

difference and, were the plot to extend to very large r, it would be apparent that the decay 

of the linear-combination wave function is more rapid than the exact one. 
 


