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Solved Homework 
 

We determined that the two coefficients in our two-gaussian wave function were 
c1 = 0.3221 and c2 = 0.7621. We also determined that  
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Using the normalized coefficient values, we have <T> = 0.4873. Since <H> was −0.4819, 
<V> must be −0.9692. We could also simply plug the coefficients into 
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which is also (as it must be) −0.9692. If we take −2<T> we have –0.9746. So, although 
the virial theorem is almost satisfied, it is not quite. The error is less than 1%. 
 
 Exact wave functions must satisfy the virial theorem, but that is not true of 
approximate wave functions. As such, one may examine the virial ratio to assess the 
quality of an approximate wave function. As one gets closer to the exact wave function, 
one should get closer to a ratio of –2. 
 
 
Antisymmetry 
 
 Consider a quantum mechanical system consisting of two indistinguishable 
particles, e.g., two electrons. If we wanted to compute the probability that we would find 
electron 1 in some volume of space characterized by ra ≤ r ≤ rb, θa ≤ θ ≤ θb, and φa ≤ φ ≤ 
φb, and at the same time find electron 2 in some volume of space characterized by rc ≤ r 
≤ rd, θc ≤ θ ≤ θd, and φc ≤ φ ≤ φd, we would compute this probability as 
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where the cumbersome notation is meant to emphasize that the probability has to do with 
electron 1 being in volume 1 and electron 2 being in volume 2, that Ψ depends (in an 
unspecified way) on two individual electron wave functions ψ, the first of which is 
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occupied by electron 1 and the second by electron 2, and that the first set of integration 
coordinates corresponds to electron 1 and the second set to electron 2. 
 
 Now, since the electrons are indistinguishable, we are not permitted to really label 
them. Put differently, the probability of finding electron 2 in volume 1 and electron 1 in 
volume 2 must be the same as the probability we’ve already discussed up to this point 
(that is, there is a single probability of finding “an” electron in volume one and “another” 
electron in volume 2). We would write the second probability just mentioned as 
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where the change is simply that we have swapped the coordinates that we used to use for 
electron 1 to now be associated with electron 2 and vice versa. Given that the 
probabilities in eqs. 20-1 and 20-2 are equal, and given that both integrations are over the 
identical volumes (we left integration over the spin coordinates out for simplicity, but 
nothing changes if they are included), then it must be the case that 
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In the absence of vector fields we may write any wave function as a real wave function, 
which gives 
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2
"1 1( ),"2 2( )[ ] = !2 "1 2( ),"2 1( )[ ]  (20-4) 

 
There are two solutions to this equation, namely 
 
 ! "1 1( ),"2 2( )[ ] = ±! "1 2( ),"2 1( )[ ]  (20-5) 
 
That is, it could either be the case that switching the coordinates for electron 1 and 
electron 2 has no effect on Ψ or it could be the case that switching the coordinates 
changes the sign of Ψ.  
 
 All particles in the universe fall into one of these two classes. Particles whose 
wave functions are unchanged by coordinate exchange are called “bosons” and their 
wave functions are said to be “symmetric”. Bosons are particles having integer spin. 
Examples of such particles are photons and α particles (helium-4 nuclei). By contrast, 
particles with half-integer spin have their wave functions change sign upon coordinate 
exchange; such particles are called “fermions” and their wave functions are said to be 
“antisymmetric”. Examples of fermions are electrons, protons, and neutrons. 
 
 It was Wolfgang Pauli who first proposed that electrons should be characterized 
by antisymmetric wave functions. This postulate is now known as the “Pauli principle”. 
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Many of you may have heard this principle put differently, namely as “No two electrons 
can be characterized by all identical quantum numbers.” While that statement is often 
found in textbooks as the Pauli principle, it is not actually the correct postulate. Rather 
(as we will see below) it follows from the postulate that electrons have antisymmetric 
wave functions. 
 
 If this all seems terribly abstract, let us take a simple example of a wave function 
for two particles. In particular, let’s imagine two particles described by wave functions a 
and b. How might we write a wave function for both at the same time? We might try 
 
 ! 1,2( ) = a 1( )b 2( )  (20-6) 
 
but we run into an immediate problem, namely that if we swap the particles (that’s what 
it means to swap their coordinates, it means to put particle 1 where particle 2 used to be, 
and vice versa) we have 
 
 ! 2,1( ) = a 2( )b 1( )  (20-7) 
 
and just looking at eqs. 20-6 and 20-7 makes it clear that Ψ(2,1) is neither equal to Ψ(1,2) 
nor to −Ψ(1,2)—it’s just different. However, we could fix things up a bit by taking as our 
starting wave function instead 
 
 ! 1,2( ) = a 1( )b 2( ) + a 2( )b 1( )  (20-8) 
 
Now when we swap indices we have 
 
 ! 2,1( ) = a 2( )b 1( ) + a 1( )b 2( )  (20-9) 
 
and, sure enough, Ψ(2,1) = Ψ(1,2) (stare at it if you don’t see it), so we have a symmetric 
wave function—one that would be suitable for a pair of bosons. 
 
 What about an antisymmetric wave function? Let’s try 
 
 ! 1,2( ) = a 1( )b 2( ) " a 2( )b 1( )  (20-10) 
 
Swapping indices gives 
 
 ! 2,1( ) = a 2( )b 1( ) " a 1( )b 2( )  (20-11) 
 
and, huzzah, Ψ(2,1) = −Ψ(1,2) (you might need another stare), so the Ψ(1,2) of eq. 20-10 
is indeed antisymmetric, and would be suitable for a pair of electrons. 
 
 Note that if the two electrons in question shared all the same quantum numbers 
(e.g., n, l, ml, and ms in a hydrogenic orbital) then orbitals a and b would be identical. In 
that case, a = b and we would write eq. 20-10 as 
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 ! 1,2( ) = a 1( )a 2( ) " a 2( )a 1( )

= 0
 (20-12) 

 
I.e., the wave function vanishes if both electrons have all the same quantum numbers. As 
noted above, this is a consequence of assuming electrons must have antisymmetric wave 
functions, not a postulate of its own. 
 
 This permits us to explain something that you all know, but that we have not yet 
proven. In particular, we now see why we cannot place more than 2 electrons in any one 
hydrogenic orbital. Specifying a single hydrogenic orbital fixes all of the quantum 
numbers for the electron except ms; the latter quantum number can only take on two 
values, ±1/2, so only two electrons can be put into the orbital. Other important 
consequences of antisymmetry will come up later in the course. 
 
 As for bosons, we should pause for a moment to note that there appears to be no 
restriction at all on having as many bosons as one would like all be characterized by 
identical quantum numbers (eq. 20-8 does not vanish when a = b). At low temperatures, 
bosons do indeed exhibit a “collapse” into a single so-called “coherent” state that is 
called a Bose-Einstein condensate. Such condensates are like macroscopic atoms and can 
have bizarre properties. A more everyday boson coherence is exhibited by light when it is 
in the form of laser light. Laser beams are beams of light in which all of the photons are 
quantum-mechanically identical and they can thus be tightly focused and used for many 
specialized purposes. 
 
 We will not, however, return to bosons again in this course. Spin is too interesting 
to give up on. Indeed, let’s look at it more closely. 
 
Spin Operators 
 
 At a superficial level, spin and orbital angular momentum (L) are very similar to 
one another for a single electron. One has the relationships that S is a vector quantity with 
components Sx, Sy, and Sz, that 
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and the commutation relationships 
 

 

  

Sx ,Sy[ ] = ihSz
Sy, Sz[ ] = ihSx
Sz ,Sx[ ] = ihSy

 (20-14) 

 
Remember that those commutation relationships are consistent with the observation of 
half-integer values for the quantum numbers for Sz. In addition, they prevent us from 
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knowing more than one component of S at any one time. The x and y components are 
usually the ones taken to be uncertain, just as for L. 
 
 The odd thing about spin is that it has no classical physical analog, so coming up 
with an actual operator for use in evaluating trial wave functions is a serious challenge. In 
essence, we go about this empirically, taking advantage of the simplicity of there being 
only two apparent eigenfunctions for Sz for a single electron, namely α and β where 
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Trial and error indicates that all of the above equations involving spin are satisfied if we 
make the following definitions using small matrices 
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(Note that α and β are normalized if you recall that the complex conjugate of a matrix is 
its adjoint.) Let's verify one of the above equations. 
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It's a simple matter to verify the corresponding equation for β. What about a commutator? 
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Let's try something different. What's the result of applying Sx to a given spin? 
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You should verify the below relationships for yourself 
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 Finally, to compute S2, we can use the same relationship that we worked out for 
angular momentum (since the commutation relationships are the same), namely that 
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(see eq. 11-18 of lecture notes for L and rearrange). Recalling, again by analogy, the 
definitions for the raising and lowering operators, we have 
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Similarly, we can show 
 

 
  

S! = h
0 0

1 0

" 

# $ 
% 

& ' 
 (20-23) 

 
 So, we now can evaluate eq. 20-21 as 
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Note that the matrix part of the operator is the unit matrix. Since multiplication by the 
unit matrix leaves any matrix unchanged, the α and β matrices will indeed be 
eigenfunctions of S2, and they will have eigenvalue 3/4 h-bar squared, which is indeed 
s(s+1) given that s = 1/2 h-bar. 
 
 
Spin in Many-electron Systems 
 
 Hydrogenic orbitals are eigenfunctions of the angular momentum operators L2 
and Lz because of the spherical symmetry of the atomic system. When we place more 
than one electron into an atomic system, it turns out that no individual electron's angular 
momentum is a conserved quantum number any longer, but the sum of all of the 
electrons' angular momenta is. There are complicated rules for assigning quantum 
numbers L and ML, which are the many electron analogs of l and ml. However, we are not 
going to spend any time on them. Instead of focusing on many electron atoms, we are 
going to go straight to molecules. As polyatomic molecules do not have spherical 
symmetry, there are almost never any orbital angular momentum quantum numbers to 
worry about. 
 
 Wave functions of molecules can, however, still be eigenfunctions of the many 
electron operators S2 and Sz. As such, we will look more closely at how to compute these 
quantities for many-electron cases. The many-electron operators are 
 

 

  

Sz 1,2,K,N( ) = Sz i( )
i

N

!

S 1,2,K,N( ) = S i( )
i

N

!

 (20-25) 

 
where the operators in the sums are the one-electron operators we have already discussed 
up to this point. Sz is thus very simple. Every term in the sum is either h-bar over 2 (for α 
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electrons) or negative h-bar over 2 (for β electrons). So, if there are an equal number of 
both, the many-electron Sz has an eigenvalue of zero. For every excess α electron the 
eigenvalue increases by h-bar over 2, while for every excess β electron the eigenvalue 
decreases by h-bar over 2. 
 
 S, on the other hand, involves a vector sum. So, when we consider the many-
electron S2, we have the dot product 
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Evaluation of this operator can be somewhat more challenging. 
 
 In the end, the eigenvalue equation for the many-electron quantum number 
associated with S2 is 
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where S in eq. 20-27 is the many-electron quantum number (what we've called s for one-
electron systems) not the spin operator. One just has to be savvy to avoid confusion 
about when we mean the operator and when we mean the quantum number. 
 

With respect to Sz, the eigenvalue equation is 
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For a given value of S, we also have that allowed values of MS are given by 
 
 

  
MS = !S,! S !1( ),K, S !1( ),S  (20-29) 

 
Thus, when S = 0, there is only one possible value for MS, namely 0, and we call such a 
state a "singlet", because it is singly degenerate. When S = 1/2, the allowed values for MS 
are −1/2 and 1/2, and we call such a state a "doublet" because, in the absence of a 
magnetic field, the two states are degenerate in energy. I.e., the level is doubly 
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degenerate. Recall that this was the situation for one-electron hydrogenic atoms. There is 
one electron, for which S = s = 1/2. Recall also that we indicated this doublet degeneracy 
by the left superscript in the term symbol (see Lecture 15). Now, when S = 1 you should 
be able to see that there will be 3 allowed values for MS, so we call this state a triplet, and 
so on through quartet, quintet, sextet, etc. 
 
 Next lecture, we will examine some many-electron wave functions more closely. 
 
Homework 
 
To be solved in class:   
 
Working with matrices, verify all of the relations in eq. 20-20 and also verify that  
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To be turned in for possible grading Mar. 11:   
 
What are the normalized eigenfunctions and eigenvalues for Sx and Sy, respectively? 
(Hint:  Since Sx and Sy operate on α and β in a way that transforms them to constants 
times β and α, respectively, it might be good to consider functions of the form aα + bβ, 
where a and b are coefficients chosen to ensure that the functions are eigenvalues and 
also that they are normalized.) 


