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 Spring Semester 2006 

Christopher J. Cramer 
 

Lecture 21, March 10, 2006 
 
(Some material in this lecture has been adapted from Cramer, C. J. Essentials of 
Computational Chemistry, Wiley, Chichester:  2002; pp. 514-518.) 
 
 
Solved Homework 
 

We already showed that Sxα = (  

! 

h /2)β (eq. 20-19) For the operation on β we have 
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Working with the Sy operator involves 
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 For the raising operator we have 
 



  21-2 

 

  

S+! = h
0 1

0 0

" 

# $ 
% 

& ' 
1

0

" 

# $ 
% 

& ' 

= 0

 

 
and 
 

 

  

S+! = h
0 1

0 0

" 

# $ 
% 

& ' 
0

1

" 

# $ 
% 

& ' 

= h
1

0

" 

# $ 
% 

& ' 

= h(

 

 
 Similarly 
 

 

  

S!" = h
0 0

1 0

# 

$ % 
& 

' ( 
1

0

# 

$ % 
& 

' ( 

= h
0

1

# 

$ % 
& 

' ( 

= h)

 

 
and 
 

 

  

S!" = h
0 0

1 0

# 

$ % 
& 

' ( 
0

1

# 

$ % 
& 

' ( 

= 0

 

 
 
Spin-Free Many-Electron Wave Functions and Antisymmetry 
 
 We have already seen that if we have two electrons in two orbitals a and b, then 
an acceptable antisymmetric wave function is 
 
 ! 1,2( ) = a 1( )b 2( ) " a 2( )b 1( )  (21-1) 
 
Note that a different, but completely equivalent way to write this is 
 

 ! 1,2( ) =
a 1( ) b 1( )

a 2( ) b 2( )
 (21-2) 

 
If the orbitals a and b are orthonormal, let's consider what needs to be done to normalize 
Ψ. We have 



  21-3 

 

 

!* 1,2( )
"#

#

$ ! 1, 2( )
"#

#

$ dr1dr2 =

a
*
1( )

"#

#

$ b
*
2( )

"#

#

$ a 1( )b 2( )dr1dr2

" a
*
1( )

"#

#

$ b
*
2( )

"#

#

$ a 2( )b 1( )dr1dr2

" a
*
2( )

"#

#

$ b
*
1( )

"#

#

$ a 1( )b 2( )dr1dr2

+ a
*
2( )

"#

#

$ b
*
1( )

"#

#

$ a 2( )b 1( )dr1dr2

 (21-3) 

 
Since a and b are orthogonal, anytime we have an integral over the coordinates of either 
electron 1 or electron 2 (or both) that involves the product a*b , it will be zero. On the 
other hand, since a and b are normalized, if the only products in the integrals are a*a or 
b*b, they will be equal to one. Thus, the value of eq. 21-3 is 1−0−0+1=2. 
 
 So, the normalized form for eq 21-2 is 
 

 ! 1,2( ) =
1

2

a 1( ) b 1( )

a 2( ) b 2( )
 (21-4) 

 
Now, consider a case of more than two electrons. We might make a determinant along 
the lines of 
 

 

  

! 1,2,K,N( ) =

a 1( ) b 1( ) L n 1( )

a 2( ) b 2( ) L n 2( )

M M O M

a N( ) b N( ) L n N( )

 (21-5) 

 
Note that swapping the coordinates of any two electrons is equivalent to swapping two 
rows in the determinant (e.g., we could switch rows 1 and 2 and the effect would be that, 
in every term in the determinant, electrons 1 and 2 would have been swapped). It is a 
known feature of determinants that when two rows are swapped, the value of the 
determinant changes sign. So, this satisfies antisymmetry perfectly. 
 
 As for normalization, a bit of thinking about the orthonormality of the orbitals 
should make it clear that, when we integrate Ψ*Ψ, the only products between pairs of 
terms in the determinants that will not be zero will be the square moduli of each term 
with itself, and each one of those will be equal to one. As there are N! terms in a N x N 
determinant, that means that an acceptable, normalized, antisymmetric, many-electron 
wave function can be 
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! 1,2,K,N( ) =
1

N!

a 1( ) b 1( ) L n 1( )

a 2( ) b 2( ) L n 2( )

M M O M

a N( ) b N( ) L n N( )

 (21-6) 

 
where the elements of the determinant are themselves individual, orthonormal, one-
electron orbitals ("orbital" is just another word for a one-electron wave function). This 
form for a many-electron wave function is called a “Slater determinant”, after John C. 
Slater, who first proposed it. 
 
 Note that this is not the only way in which one can form properly antisymmetric 
many-electron wave functions. All sorts of mathematical functions can be designed that 
properly change sign when electronic coordinates are interchanged. The Slater 
determinant form, however, has the advantage that it connects with the chemist's intuition 
of electrons occupying individual, distinct orbitals. Other antisymmetric functions do not 
admit to such a simple decomposition, so while they can be useful, they are not very 
intuitive. 
 
 Because eq. 21-6 is somewhat cumbersome to write out, the usual notation is to 
represent the Slater determinant as a ket, i.e.,  
 
   ! 1,2,K,N( ) = abLn  (21-7) 
 
where the normalization constant is not written but is taken as implicit in the ket. You 
just have to remember that it is there. 
 

Note that a wave function that is written as a product of orbitals (as is each 
individual term of the determinant) is called a “Hartree product”. Hartree was a 
theoretical physicist who was very much aided by his father in his research. His father 
was a retired mariner who enjoyed doing long, complicated arithmetic calculations—a 
perfect collaborator in the early part of the 20th century before computers were available 
(or even adding machines, the latter being mechanical computing devices that preceded 
computers). 
 
 One sometimes refers to a Slater determinant as an antisymmetrized Hartree 
product, and one can even define an operator, called the antisymmetrizer, that converts a 
Hartree product into a Slater determinant. However, we will not explore this in any 
further detail. 
 
 
Spin Orbitals 
 
 Our discussion above has ignored any explicit discussion of spin. Recall that our 
ad hoc way of dealing with spin (which has the virtue of usually being useful!) is to form 
a complete wave function simply by multiplication of a spatial wave function by a spin 
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eigenfunction (either α or β). When we are using such a wave function as one of several 
in a many-electron calculation, we call it a spin orbital. Of course, for any one spatial 
function (say, a 2s orbital) there are only two possible spin orbitals:  the 2sα and the 2sβ. 
A Slater determinant involving spin orbitals might appear as 
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 (21-8) 

 
where there are N electrons and, at least in eq. 21-8, the first 4 doubly occupy spatial 
orbitals a and b while the rest occupy other orbitals until they are used up. Note that there 
is no requirement that any orbital be doubly occupied, that’s just the form of the example. 
If there were to be an odd number of electrons, obviously there would have to be at least 
one orbital that was not doubly occupied, and in general there can be many. 
 
 Let’s look rather carefully at the situation of 2 electrons in 2 orbitals. There are 6 
ways to make a Slater determinant for this situation. They are: 
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 (21-9) 

 
where the superscripts I−VI are simply labeling for further discussion. If it isn’t obvious 
that these six determinants are all possibilities (because they are complicated to look at) 
just think about possible Hartree products. We can have (I) both electrons in orbital a 
(only possibility is one α and one β), (II) both electrons in orbital b (again, only 
possibility is one α and one β), (III) one α electron in each spatial orbital, (IV) one β 
electron in each spatial orbital, (V) an α electron in a and a β electron in b, and (VI) vice 
versa, a β electron in a and an α electron in b. 
 
 As these are just 2 x 2 determinants, let’s expand them so that they fit on one line. 
Then we have 
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You might quickly verify that these are, as they must be, all properly antisymmetric. 
 
 Now, since we have two electrons, we know that there can only be two 
possibilities for wave functions that are eigenfunctions of the total spin operator S2. One 
possibility is that the spins of the two electrons add constructively to give a total S value 
of 1 h-bar (quantum number S = 1) and the other possibility is that they add destructively 
to give a total S value of 0 (quantum number S = 0). The expectation value of S2 for an 
eigenfunction is S(S + 1) h-bar squared, so in this case the two possibilities are 2 (S = 1) 
and 0 (S = 0). 
 
 Let us see which, if any, of the wave functions above are indeed proper 
eigenfunctions of S2. (We care about this because the “true” wave function will indeed be 
one spin state or another, so trial functions that fail to be are not necessarily useful for 
much.) We’ll start with wave function I and use Dirac notation to try to keep things 
moderately tractable. Recall that S2 does not operate on the spatial parts of the wave 
functions, so integration over the spatial coordinates simply involves overlap integrals—
these will be 1 or 0 depending on whether the integration for each electron involves only 
one orbital or both, respectively, assuming a and b are orthonormal. Thus, we have for 
wave function I 
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So, the spatial portion of this wave function integrates to 1 and we are left needing to 
evaluate S2 operating on the functions α(1)β(2) and on α(2)β(1). Expressing many-
electron S2 according to eq. 20-26, we find for the first case (in a.u., to save writing   

! 

h  
again and again) 
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where we have evaluated the components of S using eqs. 20-15, 20-19, and 20-20. 
Similarly, for the second spin product we find 
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When we plug these results back into the remaining integrals in eq. 21-11, we find for the 
first of the four in brackets 
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where the orthonormality of the α and β spin functions for each electronic spin 
coordinate ω permits the trivial evaluation of the individual integrals. Since the fourth 
integral on the r.h.s. of the last equality in eq. 21-11 differs only by assignment of the 
electron labels 1 and 2, it also must have a value of 1. By the same symmetry argument, 
the second and third integrals must be equal to one another. Evaluating the second using 
eq. 21-13 gives 
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Thus, the expectation value of S2 from eq. 21-11 for wave function I is simply 
1/2(1−1−1+1)=0. A lot of work to get zero, no? Nevertheless, this wave function is, then, 
a proper eigenfunction of S2. Since S is zero, the only allowed value for MS (the 
component of the total spin along the z axis) is also zero. The energy of this wave 
function is thus singly degenerate with respect to the z component of the spin, and hence 
we call this state a “singlet”. Singlet wave functions are indicated by a superscript one to 
the left of the wave function symbol, i.e., 1ΨI (recall the superscript 2 we used for 
doublet hydrogenic wave functions). Moreover, this is a special case of a singlet that 
involves all orbitals being doubly filled with one α and one β electron each. Such a 
singlet state is called a “closed-shell singlet”. 
 
 If we consider wave function II, we see that it is different only in the sense that 
the doubly occupied orbital is b instead of a. Since S2 only operates on the spin part of 
the wave function, and since the spin part of wave function II is the same as that in wave 
function I, it is evident that this state, too, is a closed-shell singlet. 
 
 Next lecture we will focus on the status of the remaining wave functions. The 
homework leads in that direction. 
 
 
Homework 
 
To be solved in class:   
 
Evaluate < α(1)α(2) | S2 | α(1)α(2) >. Remember to use eq. 20-26 to expand the operator. 
 
To be turned in for possible grading Mar. 24:   
 
Evaluate < β(1)β(2) | S2 | β(1)β(2) >. Remember to use eq. 20-26 to expand the operator. 


