
Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits 
 Spring Semester 2006 

Christopher J. Cramer 
 

Lecture 22, March 20, 2006 
 
(Some material in this lecture has been adapted from Cramer, C. J. Essentials of 
Computational Chemistry, Wiley, Chichester:  2002; pp. 514-518.) 
 
 
Solved Homework 
 

When we expand the two-electron S2 operator into its individual components, we 
have 
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Note how the terms deriving from Sx and Sy become zero since these operators transform 
the α spin function to the β spin function, and an integration over α(i)β(i)dω(i) gives zero 
owing to the orthogonality of the spin functions. 
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More Spin Algebra 
 
 The final result derived in the homework above, 2, is a proper eigenvalue of S2 
corresponding to S = 1. That means that α(1)α(2) is an eigenfunction of S2. Since S = 1, it 
must be the case that MS can equal −1, 0, or 1. Recall that evaluation of MS is 
straightforward. One simply adds one-half for each α electron and subtracts one-half for 
each β electron. So, for the case of α(1)α(2), we have MS = 1. The other two cases, −1 
and 0, will be degenerate in energy in the absence of a magnetic field, so this state is 
triply degenerate. Such states are called “triplet” states, and indicated by a superscript 3 
to the left of the wave function. 
 
 Technically, we did not prove that the expectation value of S2 over the full wave 
function ΨIII is 2, we only showed it for the spin part of the wave function. It is a trivial 
matter, however, to show that the spatial portion of the wave function is normalized (it’s 
obviously a 2 x 2 determinant of orthonormal spatial functions preceded by the square 
root of 2!, so that’s that). So, we should indicate the triplet character of ΨIII by writing 
3ΨIII. 
 
 Some quick consideration of the symmetric nature of the β(1)β(2) case should 
convince one that 
 
 ! 1( )! 2( ) S2 ! 1( )! 2( ) = 2  (22-1) 

 
and that this is the MS = −1 component of the triplet, 3ΨIV (the homework to prove this 
will also, no doubt, be convincing…) 
 
 We now turn to ΨV. Evaluation of S2 proceeds in the fashion to which we should, 
by now, be accustomed 
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Note that the second and third integrals on the r.h.s. are zero because of the 
orthonormality of the spatial orbitals a and b, whose products appear over the same 
electronic coordinate in those integrals. The spatial functions integrate to one in the first 
and fourth integrals, and the remaining spin expectation values are just those of eqs. 21-
14 and 21-15. Thus, the expectation value of eq. 22-2 is 1/2(1 − 0 − 0 + 1) = 1. There is 
no integer value of S for which S(S + 1) = 1, so evidently ΨV is not an eigenfunction of 
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S2. Symmetry arguments should make it clear that the same result will hold for ΨVI; it 
too has <S2> = 1 and is not an eigenfunction of the total spin squared operator. 
 
 Note that the expectation value of 1 is exactly the average of a singlet (<S2> = 0) 
and a triplet (<S2> = 2), so it might be what we expect for a wave function that is a 50:50 
mixture of singlet and triplet. If both ΨV and ΨVI are equal mixtures of singlet and triplet 
wave functions, that suggests that taking linear combinations of the two (and 
renormalizing) might give us pure spin states. 
 
 Indeed, if we examine the sum of the two, we consider 
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After integration over the spatial coordinates (which gives 2 times (1/2)2, or 1/2), we may 
evaluate the expectation value of S2 as 
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where the values of 1 for the spin integrals come from our prior evaluations (see eqs. 21-
14 and 21-15). 
 
 So, the normalized sum of the two wave functions is indeed an eigenfunction of 
S2. It is a triplet. The only component of the triplet left that we have not found is MS = 0, 
and it would seem that eq. 22-3 is that wave function, since with one up and one down 
electron the expectation value of Sz will indeed be zero. If one likes a vector picture for 
this situation, it is as though the two electrons, α and β, are precessing about the z axis in 
phase. One points up and one points down, so the net z component is zero, but the 
resultant vector has length square root 2, as it should for a triplet (see below figure). 
 
 Now let’s consider subtracting ΨVI from ΨV. That gives 
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We have previously evaluated <S2> for the spin function in eq. 22-5. It is zero (see eq. 
21-11 and subsequent discussion). So, this wave function is indeed a singlet spin 
eigenfunction. Note that two different orbitals are occupied, so one refers to this as an 
“open-shell” singlet to distinguish it from the closed-shell case, where all orbitals are 
completely filled. Returning to the geometric picture of spin, now we have two spin 
vectors pointing up and down but exactly out of phase with one another. In that case they 
completely cancel, and the total spin is indeed zero. 
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The Post-algebraic “Big Picture” of Two-electron Spin Functions 
 
 What were the key qualitative features of our two-electron wave functions? First, 
we found that all could be represented either as 2 x 2 determinants or as linear 
combinations of 2 x 2 determinants (thereby satisfying antisymmetry). It is a key 
observation that sometimes such linear combinations are required in order to form valid 
eigenfunctions of the total-spin-squared operator. The total number of wave functions 
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was 6, which is less than the limit of 10 that would arise from simple statistics of how 
many different ways to put two electrons that can be either of two spins in either of two 
orbitals—the reduction of 4 in possibilities is imposed by the Pauli exclusion principle, 
which prevents two electrons of the same spin from being in the same orbital (a 
consequence of antisymmetry, recall). 
 
 All determinants were eigenfunctions of Sz, with eigenvalues of either −1, 0, or 1. 
The cases with eigenvalues of ±1 must be triplets (since S must also be 1 in order for MS 
to be allowed to take on the value of ±1). The cases with eigenvalue 0 can be either 
singlets or the MS = 0 component of the triplet. The three triplet energies are degenerate 
in the absence of a magnetic field. 
 
 When one goes on to more spins than two, everything we've done up until now 
can be generalized, but as you might imagine, the spin algebra gets less pleasant for the 
most part. We will not plow through 3, 4, ... electrons. Rather, we will simply note that 
determinants analogous to those worked with above continue to be useful, either 
individually or in linear combinations, for the formation of simultaneous eigenfunctions 
of the Hamiltonian and the total spin squared operator. 
 
 Of more interest, however, is the question of how the relative energies of these 
different spin states may be expected to compare. We will examine this question in the 
context of the helium atom. 
 
 
The Helium Atom 
 
 The He atom is a 2-electron system, so all our work above applies. Now, 
however, let's give actual names to the orbitals a and b. The low energy states of He will 
use the lowest energy orbitals, and the first two of these are the 1s and 2s orbitals (the 2s 
will be lower than the 2p set if the 1s is occupied, since the electron in the 1s will screen 
the nucleus from 2p electrons (which have a node at the nucleus) more effectively than it 
does from 2s electrons (which have non-zero amplitude at the nucleus). We could thus 
represent our 6 determinants outlined above as illustrated in the below figure. 
 
 Note that the figure shows the orbitals with 1s below 2s in recognition of the 
lower energy of the former compared to the latter. It shows the linear combinations 
required for the MS = 0 component of the triplet and the open-shell singlet, and it shows 
the shorthand notation one might use to represent these wave functions. A bar over an 
orbital means a β electron and no bar means an α electron and a "squared" exponent 
means the orbital is occupied by one electron of each spin. The notation for the linear 
combinations is actually a bit more detailed than that usually employed. One usually 
writes only a single ket, and it is implicit that proper linear combinations will be 
employed to ensure a pure spin state if necessary (with the nature of the combination 
depending on the total spin desired). 
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 As for the energies, it seems intuitively clear that the lowest energy state will be 
the | 1s2 > and the highest energy state the  | 2s2 >, because these two states put both 
electrons in the lowest and highest energy orbitals, respectively. We know that the triplets 
are all the same energy (since they are degenerate in the absence of a magnetic field) but 
it is not obvious whether they are lower, higher, or equal to the energy of the open-shell 
singlet. Moreover, the quantitative differences are also not obvious. 
 
 Let us consider the energy of the ground state. If we evaluate it with the He 
Hamiltonian we have 
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Let's go through the steps in eq. 22-6 carefully. First, we expand our shorthand to the full 
blown determinant, except that we continue to regard normalization as implicit. Next, we 
insert the correct Hamiltonian for the He atom:  kinetic energy of each electron, attraction 
of each electron to the nucleus (dependent on distance from the nucleus, defined as ri 
where i tells which electron we are talking about), and the interelectronic repulsion 
(which depends on the distance between the electrons, r12). Since the Hamiltonian does 
not depend on spin, we can integrate out the spin coordinates (to one, since the singlet 
spin function is normalized) and be left with only spatial functions. 
 
 If we split this into 5 integrals, we can quickly see that most of those integrals 
only depend on the coordinates of one electron. In that case, integration over the 
coordinates of the other electron simply gives one (the 1s function is normalized), so we 
can drop it from the integrals. That is the simplification involved in the next to last 
equality. Finally, the energy of a single electron all alone in a 1s orbital is just the sum of 
its kinetic and potential energies, ε1s, which we see appears twice (once for electron 1 
and once for electron 2). The only remaining term is that for interelectronic repulsion. 
Such an integral is called a Coulomb integral, and it is usually abbreviated as Jab, where 
a and b are the orbitals involved. Note that it is always non-negative (because the integral 
will end up as square modulus of one orbital (always non-negative) times square modulus 
of a second orbital (always non-negative) times inverse distance between integration 
coordinates (also always non-negative). 
 
 Evaluation of the Coulomb integral is not particularly pleasant (it requires a 
careful transformation of coordinates). The value is, in the end 5/4 a.u. And, of course, 
we remember that the energy of a single electron in a 1s orbital is −Z2/2, so for helium we 
have −2. Using this for ε1s, the final value for our ground state He atom is (−2) + (−2) + 
(5/4) = −2.75 a.u. (this is the value that was presented without derivation in lecture 18).  
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 Entirely analogous work for the highest energy determinant | 2s2 > results in 
every term being divided by 4 (a 1/n2 term where n is the principal quantum number). In 
that case, then, the energy is −0.6875 a.u. 
 
 What about the triplet state? All three components have the same energy in the 
absence of a magnetic field, so it will suffice to compute the energy for any one. We 
determine for the MS = 1 state 
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 Again, let's be crystal clear about steps. Step 1:  insert the actual determinant with 
normalization implicit. Step 2:  integrate over spin to arrive at a factor of one since spin is 
normalized. Step 3:  Expand the Hamiltonian into its one-electron and two-electron 
terms. Since each one-electron term allows integration over the other electron's 
coordinates (to give one or zero) these integrals are simplified. Note, however, that 
because of the antisymmetric nature of the spatial wave function (for the singlets treated 
so far it's been the spin wave functions that were antisymmetric) there are 4 terms 
involving the 1/r12 operator. Two of these terms we've seen before—they are Coulomb 
integrals—but one term is new. It is the integral involving the operator 1/r12, but now 
applied to an integral in which the indices of the electrons have been permuted over the 
spatial orbitals. The integral K is called an "exchange integral" (because the electronic 
coordinates are exchanged on either side of the operator). We've already established that 
ε1s is −2 a.u. and ε2s is −0.5 a.u.. Without going through the math, we'll accept that J1s2s 
is 0.420 a.u. and K1s2s is 0.044 a.u. In that case, the net energy of the triplet is −2.124 a.u. 
(above the ground-state singlet, below the other closed shell singlet). 
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 What about the open-shell singlet? It is left as tomorrow's homework that we have 
 
 1s2s H1s2s = !1s + !2s + J1s2s + K1s2s  (22-8) 
 
in which case the energy of the open-shell singlet is higher than that of the triplet by 
2K1s2s or 0.088 a.u. This difference is called the "singlet-triplet splitting". For a given 
pair of distinct orbitals a and b, the triplet will always be below the corresponding open-
shell singlet unless the orbitals are so far apart in space that Kab is zero, in which case the 
two states will be degenerate. 
 
 So, for the He atom, we have the ordering of energies 
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If we compare our computed energy differences to experiment, we find that the ordering 
of eq. 22-9 is entirely correct, however, the quantitative predictions are not particularly 
good. That is because we failed to variationally optimize our wave functions, but that will 
not concern us here. 
 
Homework 
 
To be solved in class:   
 
Prove eq. 22-8 for the open-shell singlet. 
 
To be turned in for possible grading Mar. 24:   
 
Consider the fluorine atom. Its ground state is represented by the determinant 

! 

2
1s
2
2s
2
2px
2
2py
2
2pz . Although fluorine is the most electronegative element, by applying 

a high enough voltage one can still strip an electron from it to generate F+. If two 
electrons are always kept in the 1s orbital, what are all possible determinants that can be 
made by ionizing fluorine to F+? Put them in an energy ordering like that of eq. 22-9 and 
provide a short justification of your choice of order. Note that the F atom has spherical 
symmetry, so there is no difference between determinants that differ only in the labels x, 
y, and z on the p orbitals (thus, for instance, there is no difference between 
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