Chem 3502/4502  Physical Chemistry II (Quantum Mechanics) 3 Credits
Spring Semester 2006
Christopher J. Cramer

Lecture 23, March 22. 2006

(Some material in this lecture has been adapted from Cramer, C. J. Essentials of
Computational Chemistry, Wiley, Chichester: 2002; pp. 204-206, 460-463.)

Solved Homework
We need to evaluate <H> for the open-shell singlet. Thus
[1s(1)2s(2) + 15(2)2s(1) [ (1)B(2) - (2)B(1 )]|H|>

(1s2§]H1s25) = <
[15(1)2s(2) + 15(2)2s(1) [ ex(1)B(2) - «(2)B(1) ]
= ([1s(1)2s(2) + 1s(2)2s(1) J A [[1s(1)25(2) + 15(2)2s(1) )
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< rllzl (2)25(1)> <1s(z)zs(1) rllz 15(2)25(1)>_
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Step 1: insert the actual determinant with normalization implicit. Step 2: integrate over
spin to arrive at a factor of one since the singlet spin function is normalized. Step 3:
Expand the Hamiltonian into its one-electron and two-electron terms. Since each one-
electron term allows integration over the other electron's coordinates (to give one or zero)
these integrals are simplified. Note, however, that because of the nature of the spatial
wave function there are 4 terms involving the 1/r, operator, every one of which is
positive. The change in sign for the exchange integrals K, resulting from the "+" in the
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spatial wave function in contrast to the in the spatial wave function of the Mg = 0
triplet, is what accounts for the change in sign of K in the final energy expression, and
why the open-shell singlet is above the triplet in energy.

Perturbation Theory

Often in eigenvalue equations, the nature of a particular operator makes it difficult to
work with. However, it is sometimes worthwhile to create a more tractable operator by
removing some particularly unpleasant portion of the original one. Using exact
eigenfunctions and eigenvalues of the simplified operator, it is possible to estimate the
eigenfunctions and eigenvalues of the more complete operator. Rayleigh-Schrédinger
perturbation theory provides a prescription for accomplishing this.

In the general case, we have some operator A that we can write as

A=AD v (23-1)

where A is an operator for which we can find eigenfunctions, V is a perturbing
operator, and A is a dimensionless parameter that, as it varies from 0 to 1, maps A©) into
A. If we expand our ground-state (indicated by a subscript 0) eigenfunctions and
eigenvalues as Taylor series in A, we have

(0) 2y(0) 3y(0)
oW, 1,00 1. 307,
R e e - — Fo (23-2)
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( 2 (0) 3 (0)
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ag = al) + =2 e (23-3)
ad N 3! ox
A=0
where a(()o) is the eigenvalue for ‘P(SO) , which is the appropriate normalized ground-state

eigenfunction for A©). For ease of notation, eqs. 23-2 and 23-3 are usually written as
Y, = ‘P(()O) + NI’(()I) + 7»211’(()2) + k31P(g3) +oe (23-4)

and

3

ag = ay +nal) + 22l + 1 2al) + - (23-5)
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where the terms having superscripts (n) are referred to as “nth-order corrections” to the
zeroth order term and are defined by comparison to eqgs. 23-2 and 23-3.

Thus, we may write
(AQ+ 2V ) = ag | Wy) (23-6)
as

(A(O) + kV)|1P(§O) + )\‘P(()D + lepéz) + k31pé3) + ) =
(23-7)
(a(()o) + Ka(()l) + )\2062) + 7»3a83) + )|‘P(§O) + NI’(SI) + 7\211162) + )»311163) + )

Since eq. 23-7 is valid for any choice of A between 0 and 1, we can expand the left and
right sides and consider only equalities involving like powers of A. Powers O through 3
require

A ) = ¢ w™) (23-8)
AOLEDY V) = () o) 25)
ALY+ v]u) = o e ) + af | wiP)+ o] W) 23-10)

ALY + VW) = aiV|ws¥) + a9 Y+ afP|wD) + af g 23-11)

where further generalization should be obvious. Our goal, of course, is to determine the
various nth-order corrections. Eq. 23-8 is the zeroth-order solution from which we are
hoping to build, while eq. 23-9 involves the two unknown first-order corrections to the
wave function and eigenvalue.

To proceed, we first impose intermediate normalization of W); that is

(11!0 (()0)) 1 (23-12)
By use of eq. 23-4 and normalization of ‘P(SO) , 1t must then be true that
<1P(()”) |ly(()°)> =80 (23-13)

Now, we multiply on the left by ‘P(SO) and integrate to solve eqgs. 23-9 to 23-11. In the
case of eq. 23-9, we have

(O 2@ + (w0 W0 = O (w0 s O ) 23-14)



23-4

Noting that the turnover rule implies

(g |A(0)|1I161)> - (AOw |1p(()1)>

= o (@ i) (23-15)
-0
we can simplify eq. 23-15 to
1
(ws V] wl®) = o (23-16)

which is a well known result that the first order correction to the eigenvalue is the
expectation value of the perturbation operator over the unperturbed wave function.

Note that we did 1st order perturbation theory without realizing it in lecture 18.
We said that we realized that we could not solve the Schrodinger equation for He because
of the 1/rj, term, so we decided to remove it. The resulting operator permitted exact
solutions (since it was a separable combination of 2 one-electron operators) with the
ground state being a product of one-electron 1s orbitals. We then evaluated the energy as
the sum of the 1Is orbital energies plus <1/r;,> evaluated over the exact wave function for
the simplified operator (i.e., exactly eq. 23-16) —that’s first-order perturbation theory. It’s
really pretty easy.

As for ‘P(gl), like any function of the electronic coordinates, it can be expressed as

a linear combination of the complete set of eigenfunctions of A©), i.e.,

1 0
Wi = 3wl (23-17)
J

To determine the coefficients ¢; in eq. 23-17, we can multiple eq. 23-9 on the left by

II’J(-O) and integrate to obtain
) o ) o i P )

Using eq. 23-17, we expand this to
0)] 5 0) ©) ©) O\ _
(OO (o ) -

(23-19)
e

S jw;0>> OO
J
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which, from the orthonormality of the zeroth-order eigenfunctions, simplifies to

cja® + (WO VW) = ¢ ja” (23-20)

or

(0) [y ©
¢ = <lpa]60)|‘_f|zg) ) (23-21)
J

With the first-order eigenvalue and wave function corrections in hand, one can
carry out analogous operations to determine the second-order corrections, then the third-
order, etc. The algebra is tedious, and we simply note the results for the second- and
third-order eigenvalue corrections, namely

(V] |2

B
and

oy OB N oo by

o0 (PP

The homework for tomorrow will involve use of some of these equations for a specific
problem. For now, however, we will return to an issue presented previously without proof
having to do with spectroscopic selection rules.

The below material is optional and non-testable

Spectroscopic Transition Probabilities

In electronic spectroscopy, one wants to know not only the energy difference
between distinct electronic states, but also the probability that a transition between them
will take place under appropriate circumstances. Thus, in the recording of a classic
ultraviolet/visible spectrum for a molecule, the wavelengths of absorptions indicate the
energetics of the transition, while the intensities of the absorptions indicate their
“allowedness”, or probability.

The simplest approach to understanding the radiation- (light-) induced transition
between electronic states is to invoke time-dependent perturbation theory. Thus, one
starts from the time-dependent Schrodinger equation



23-6

_RW HY (23-24)

Recall that a complete set of eigenfunctions for eq. 23-24 is given by

—@E}t/h)q) (23-25)

lp'=€ J

J

where the wave functions @; are the eigenfunctions of the time-independent Schrodinger
equation having eigenvalues E;. Since the set of W; is complete, any wave function for the
system may be expressed as

—(iEkt/ h)

W See O, (23-26)
k

where the normalized expansion coefficients ¢ run over all possible eigenstates k.

We may consider the presence of a radiation field as a perturbation on the
otherwise time-independent HO. Using the standard expression for the time-dependent
electric field contribution to the Hamiltonian for radiation having a wavelength in the
UV-visible light region we have

H=H"+ eorsin(2mvt) (23-27)

where ¢ is the amplitude of the electric field associated with the light of frequency v and
r is the usual position operator (the sum of the i, j, and k operators in Cartesian space).
With a time-dependent Hamiltonian, eq. 23-26 is still valid for the description of any
wave function for the system, except that the expansion coefficients ¢ must also be
considered to be functions of 7.

A spectroscopic measurement, from a quantum mechanical perspective, may thus
be envisioned as the following process. The system begins in some stationary state, in
which case all values of ¢ in eq. 23-26 are 0, except for one, which is 1. For simplicity,
we will consider the initial state to be the ground state, i.e., ¢j = 1. Beginning at time O,
the system is then exposed to radiation until time tT. During that time, the expansion
coefficients will be in a constant state of change until, with the disappearance of the
radiation, the Hamiltonian returns to being time independent, at which point the
expansion coefficients for W cease to change. To the extent more than one coefficient is
non-zero, the system exists in a superposition of states and the probability of any
particular state k being observed by experiment, determined from evaluation of <WIW>, is

. 2
simply ¢y, .
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To determine the latter probabilities, let us evaluate eq. 23-24 for an arbitrary
wave function expressed in the form of eq. 23-26

—E%Eck(t)e_(iEkt/h)CDk = [HO +egr sin(2rwt):|2ck(t)e'(iEk’/h)q)k (23-28)
l k X

which may be expanded on both sides by explicitly taking the time derivative on the left
and evaluating HY for the eigenfunctions on the right to

_hgac(t) o-(Et1h)

N (I)k +Eck(t)Ek€_(iEkt/h)q)k
1k ot k

(23-29)
= Scr()Ee M, + egrsin(2nve) ey (1)e M,
k k
If we cancel the equivalent sums on the left and right we are left with
dclt) _ s
—E_ L()e (’Ekt/h)d)k = eorsin(2nve) Y ey (t)e (’E"’/h)cl)k (23-30)

1k ot k

We now multiply on the left by ®,, and integrate, where m indexes the stationary state ®
for which we are interested in measuring the probability of transition. This gives

—?g%(’)e-<fk”h><q>m|cpk> - cosin(2m)Sey(1)e (4 (@, e, ) 2331

Note that the overlap integral on the Lh.s. of eq. 23-31 is simply 9, because of the
orthogonality of the stationary-state eigenfunctions. Thus, only the term k = m survives,
and we may rearrange the equation to

a1 epsinzmge ) T o, o) 233

If we assume that our perturbation was small, and applied for only a short time, we may
further assume that the expansion coefficients on the r.h.s. of eq. 23-32 have their initial
(ground-state) values (i.e., all equal to zero except for ¢, = 1). This leads to the further
simplification

acgnt(t) _ —%eo Sin(mw)e-[i(Em —Eo)t/h]<q)m|r|q)0> (23-33)

In order to determine c,, at (and after) time T, we must integrate ¢ from O to T, giving
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cm(r) = —%eo forsin(Zﬂvt)e_[i(E”’_E")”h]<(I)m |r|q)0>dt

1 [ellomrol 1 gilom-o)r _4 (23-34)
“2in - (@, [rl@,)
2lh me +w a)mO -

where

w=2mv (23-35)
and
E, - E

Oy = —H—" (23-36)

What's it all mean? Well, let's now ask the qualitative question, for what values of
m is Ic,,|? large? Given a particular frequency of radiation w, the magnitude of c,, will be
large if w,, is close to w, thereby making the denominator in the second term in brackets
very small (note that even when w,,, is equal to w, the expansion coefficient is well
behaved because of the way the numerator approaches zero, as a power series expansion
of the exponential would show). This result is consistent with the notion that a photon of
energy hv is absorbed in the transition between the two states, although it takes a more
sophisticated theoretical treatment to demonstrate this. However, this term fails to
differentiate any one state m from another, all states being predicted to undergo
transitions with equal probability at their respective frequencies.

It is the last term that accounts for differences in absorption probabilities. This
term is the expectation value of the dipole moment operator (in a.u.) evaluated over
different wave functions. Its expectation value is referred to as the transition dipole
moment. As we discussed originally for the particle in a box, if < u,,, >=0, a transition is
forbidden. Here, we have finally proven it.

End of optional material
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Homework
To be solved in class:

Consider the particle of mass m = 1 in a box of length L = 1 with a bottom that is not
perfectly horizontal. In particular, rather than the inside of the box having V =0, it has a
bottom sloping down to the right described by V =k (1 —x) (i.e., linear, with height k at
the left end and O at the right end). Calculate the ground-state energy of a particle in this
box to first order in perturbation theory (fairly simple). Next, compute the ground state
wave function to first order in perturbation theory and sketch its appearance (much more
challenging). Expain the change in this wave function in an intuitive fashion.

To be turned in for possible grading Mar. 24:

Given eqgs. 23-4 and 23-12, prove eq. 23-13.



