
Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits 
 Spring Semester 2006 

Christopher J. Cramer 
 

Lecture 23, March 22, 2006 
 
(Some material in this lecture has been adapted from Cramer, C. J. Essentials of 
Computational Chemistry, Wiley, Chichester:  2002; pp. 204-206, 460-463.) 
 
 
Solved Homework 
 

We need to evaluate <H> for the open-shell singlet. Thus 
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Step 1:  insert the actual determinant with normalization implicit. Step 2:  integrate over 
spin to arrive at a factor of one since the singlet spin function is normalized. Step 3:  
Expand the Hamiltonian into its one-electron and two-electron terms. Since each one-
electron term allows integration over the other electron's coordinates (to give one or zero) 
these integrals are simplified. Note, however, that because of the nature of the spatial 
wave function there are 4 terms involving the 1/r12 operator, every one of which is 
positive. The change in sign for the exchange integrals K, resulting from the "+" in the 
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spatial wave function in contrast to the "−" in the spatial wave function of the MS = 0 
triplet, is what accounts for the change in sign of K in the final energy expression, and 
why the open-shell singlet is above the triplet in energy. 
 
 
Perturbation Theory 
 
Often in eigenvalue equations, the nature of a particular operator makes it difficult to 
work with. However, it is sometimes worthwhile to create a more tractable operator by 
removing some particularly unpleasant portion of the original one. Using exact 
eigenfunctions and eigenvalues of the simplified operator, it is possible to estimate the 
eigenfunctions and eigenvalues of the more complete operator. Rayleigh-Schrödinger 
perturbation theory provides a prescription for accomplishing this. 
 
 In the general case, we have some operator A that we can write as 
 

 A = A
(0)

+ !V  (23-1) 
 
where A(0) is an operator for which we can find eigenfunctions, V is a perturbing 
operator, and λ is a dimensionless parameter that, as it varies from 0 to 1, maps A(0) into 
A. If we expand our ground-state (indicated by a subscript 0) eigenfunctions and 
eigenvalues as Taylor series in λ, we have 
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and 
 

 
  

a0 = a0
(0)

+ !
"a0
(0)

"!
!=0

+
1

2!
!
2 "
2
a0
(0)

"!2
!=0

+
1

3!
!
3 "
3
a0
(0)

"!3
!=0

+L (23-3) 

 
where a0

(0)  is the eigenvalue for !0
(0) , which is the appropriate normalized ground-state 

eigenfunction for A(0). For ease of notation, eqs. 23-2 and 23-3 are usually written as 
 

 
  
!0 = !0

(0)
+ "!0

(1)
+ "

2
!0
(2)

+ "
3
!0
(3)

+L (23-4) 
 
and 
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where the terms having superscripts (n) are referred to as “nth-order corrections” to the 
zeroth order term and are defined by comparison to eqs. 23-2 and 23-3. 
 
 Thus, we may write 
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as 
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Since eq. 23-7 is valid for any choice of λ between 0 and 1, we can expand the left and 
right sides and consider only equalities involving like powers of λ. Powers 0 through 3 
require 
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where further generalization should be obvious. Our goal, of course, is to determine the 
various nth-order corrections. Eq. 23-8 is the zeroth-order solution from which we are 
hoping to build, while eq. 23-9 involves the two unknown first-order corrections to the 
wave function and eigenvalue. 
 To proceed, we first impose intermediate normalization of Ψ0; that is 
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By use of eq. 23-4 and normalization of !0

(0) , it must then be true that 
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Now, we multiply on the left by !0

(0)  and integrate to solve eqs. 23-9 to 23-11. In the 
case of eq. 23-9, we have 
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Noting that the turnover rule implies 
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we can simplify eq. 23-15 to 
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which is a well known result that the first order correction to the eigenvalue is the 
expectation value of the perturbation operator over the unperturbed wave function. 
 
 Note that we did 1st order perturbation theory without realizing it in lecture 18. 
We said that we realized that we could not solve the Schrödinger equation for He because 
of the 1/r12 term, so we decided to remove it. The resulting operator permitted exact 
solutions (since it was a separable combination of 2 one-electron operators) with the 
ground state being a product of one-electron 1s orbitals. We then evaluated the energy as 
the sum of the 1s orbital energies plus <1/r12> evaluated over the exact wave function for 
the simplified operator (i.e., exactly eq. 23-16)—that’s first-order perturbation theory. It’s 
really pretty easy. 
 
 As for !0

(1), like any function of the electronic coordinates, it can be expressed as 
a linear combination of the complete set of eigenfunctions of A(0), i.e., 
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To determine the coefficients cj in eq. 23-17, we can multiple eq. 23-9 on the left by 
!j
(0)  and integrate to obtain 
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Using eq. 23-17, we expand this to 
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which, from the orthonormality of the zeroth-order eigenfunctions, simplifies to 
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 With the first-order eigenvalue and wave function corrections in hand, one can 
carry out analogous operations to determine the second-order corrections, then the third-
order, etc. The algebra is tedious, and we simply note the results for the second- and 
third-order eigenvalue corrections, namely 
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and 
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The homework for tomorrow will involve use of some of these equations for a specific 
problem. For now, however, we will return to an issue presented previously without proof 
having to do with spectroscopic selection rules. 
 

The below material is optional and non-testable 
 
Spectroscopic Transition Probabilities 
 
 In electronic spectroscopy, one wants to know not only the energy difference 
between distinct electronic states, but also the probability that a transition between them 
will take place under appropriate circumstances. Thus, in the recording of a classic 
ultraviolet/visible spectrum for a molecule, the wavelengths of absorptions indicate the 
energetics of the transition, while the intensities of the absorptions indicate their 
“allowedness”, or probability. 
 
 The simplest approach to understanding the radiation- (light-) induced transition 
between electronic states is to invoke time-dependent perturbation theory. Thus, one 
starts from the time-dependent Schrödinger equation 
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Recall that a complete set of eigenfunctions for eq. 23-24 is given by 
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where the wave functions Φj are the eigenfunctions of the time-independent Schrödinger 
equation having eigenvalues Ej. Since the set of Ψj is complete, any wave function for the 
system may be expressed as 
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where the normalized expansion coefficients c run over all possible eigenstates k. 
 
 We may consider the presence of a radiation field as a perturbation on the 
otherwise time-independent H0. Using the standard expression for the time-dependent 
electric field contribution to the Hamiltonian for radiation having a wavelength in the 
UV-visible light region we have 
 

 H = H
0
+ e0rsin 2!"t( )  (23-27)  

 
where e0 is the amplitude of the electric field associated with the light of frequency ν and 
r is the usual position operator (the sum of the i, j, and k operators in Cartesian space). 
With a time-dependent Hamiltonian, eq. 23-26 is still valid for the description of any 
wave function for the system, except that the expansion coefficients c must also be 
considered to be functions of t. 
 
 A spectroscopic measurement, from a quantum mechanical perspective, may thus 
be envisioned as the following process. The system begins in some stationary state, in 
which case all values of c in eq. 23-26 are 0, except for one, which is 1. For simplicity, 
we will consider the initial state to be the ground state, i.e., c0 = 1. Beginning at time 0, 
the system is then exposed to radiation until time τ. During that time, the expansion 
coefficients will be in a constant state of change until, with the disappearance of the 
radiation, the Hamiltonian returns to being time independent, at which point the 
expansion coefficients for Ψ cease to change. To the extent more than one coefficient is 
non-zero, the system exists in a superposition of states and the probability of any 
particular state k being observed by experiment, determined from evaluation of <Ψ|Ψ>, is 
simply ck

2 . 
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 To determine the latter probabilities, let us evaluate eq. 23-24 for an arbitrary 
wave function expressed in the form of eq. 23-26 
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which may be expanded on both sides by explicitly taking the time derivative on the left 
and evaluating H0 for the eigenfunctions on the right to 
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If we cancel the equivalent sums on the left and right we are left with 
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We now multiply on the left by Φm and integrate, where m indexes the stationary state Φ 
for which we are interested in measuring the probability of transition. This gives 
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Note that the overlap integral on the l.h.s. of eq. 23-31 is simply δmk, because of the 
orthogonality of the stationary-state eigenfunctions. Thus, only the term k = m survives, 
and we may rearrange the equation to 
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If we assume that our perturbation was small, and applied for only a short time, we may 
further assume that the expansion coefficients on the r.h.s. of eq. 23-32 have their initial 
(ground-state) values (i.e., all equal to zero except for c0 = 1). This leads to the further 
simplification 
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In order to determine cm at (and after) time τ, we must integrate t from 0 to τ, giving 
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where 
 

 ! = 2"#  (23-35)  
 
and 
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 What's it all mean? Well, let's now ask the qualitative question, for what values of 
m is |cm |2 large? Given a particular frequency of radiation ω, the magnitude of cm will be 
large if ωm0 is close to ω, thereby making the denominator in the second term in brackets 
very small (note that even when ωm0 is equal to ω, the expansion coefficient is well 
behaved because of the way the numerator approaches zero, as a power series expansion 
of the exponential would show). This result is consistent with the notion that a photon of 
energy hν is absorbed in the transition between the two states, although it takes a more 
sophisticated theoretical treatment to demonstrate this. However, this term fails to 
differentiate any one state m from another, all states being predicted to undergo 
transitions with equal probability at their respective frequencies. 
 
 It is the last term that accounts for differences in absorption probabilities. This 
term is the expectation value of the dipole moment operator (in a.u.) evaluated over 
different wave functions. Its expectation value is referred to as the transition dipole 
moment. As we discussed originally for the particle in a box, if < µmn > = 0, a transition is 
forbidden. Here, we have finally proven it. 
 

End of optional material 
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Homework 
 
To be solved in class:   
 
Consider the particle of mass m = 1 in a box of length L = 1 with a bottom that is not 
perfectly horizontal. In particular, rather than the inside of the box having V = 0, it has a 
bottom sloping down to the right described by V = k ( 1 – x ) (i.e., linear, with height k at 
the left end and 0 at the right end). Calculate the ground-state energy of a particle in this 
box to first order in perturbation theory (fairly simple). Next, compute the ground state 
wave function to first order in perturbation theory and sketch its appearance (much more 
challenging). Expain the change in this wave function in an intuitive fashion. 
 
To be turned in for possible grading Mar. 24:   
 
Given eqs. 23-4 and 23-12, prove eq. 23-13. 


