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Solved Homework 
 

We are given a perturbing potential V = k ( 1 – x ) for a particle in an otherwise 
"normal" box of length 1. The first order correction to the ground-state energy is simply 
the expectation value of the perturbing operator for the exact eigenfunction that would 
exist in the absence of the perturbation. That is 
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where Ψ1 is the ground state particle-in-a-box wave function 
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(note that although our formal derivations used subscript "0" to represent a ground state, 
for the particle in a box the ground state quantum number is n = 1). The energy of the 
ground state in the absence of the perturbation is the zero-order eigenvalue plus the first 
order correction. 
 
 We may expand the expectation value above as 
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where in making the first set of simplifications we have made use of the normalization of 
the ground-state wave function (so the first integral is 1) and our prior knowledge that 
<x> for a particle in a box wave function is always L/2, which in this case is 1/2. 
 
 Note that the result is completely intuitive. It says that, to first order, the ground 
state energy goes up by k/2. This is the value that the perturbing function has in the 
middle of the box, and it is what we would obtain as an exact answer if the bottom of the 
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box had potential k/2 instead of the usual convention of zero. Since the perturbing 
function is linear, if the wave function doesn't change from that of the ground state it will 
feel the influence of the left-hand side and right-hand side of the perturbation equally so 
that it will indeed be as though the whole wave function feels the average of the 
perturbation (or k/2). 
 
 Of course, the wave function will relax to decrease its amplitude in the region of 
higher potential and increase it in the region of lower potential. That is the next part of 
the problem. From perturbation theory, we know that the first-order change in the wave 
function will be 
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where the coefficients multiplying the exact excited-state wave functions in the sum on 
the r.h.s. are given by 
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If we evaluate the coefficient equation for a generic exact excited-state particle-in-a-box 
wave function we have 
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 From an integral table, we may determine 
 



  24-3 

 

x cos j ±1( )!x[ ]dx
0

1

" =
x

j ±1( )!
sin j ± 1( )!x[ ]

0

1

+
1

j ±1( )2 !2
cos j ±1( )!x[ ]

0

1

= 0 # 0 +
#1( ) j#1

j ±1( )
2 !2

#
1

j ± 1( )
2 !2

=

0 j odd

#
2

j ±1( )2 !2
j even

$ 

% 
& 

' 
& 

 

 
 Prior to plugging this result back in to the coefficient equation, let us ponder the 
implications that only excited states with even j contribute to the perturbed ground-state 
wave function. The reason is that these wave functions have odd parity about the center 
of the box. Thus, they can be added to the ground state in a way that decreases the wave 
function to the left and increases it to the right (where the potential is lower). Wave 
functions with odd j have even parity about the box midpoint, so any sum of one of these 
wave functions with the ground state will be unable to shift amplitude from one side to 
another! 
 
 Alright, let's finally put it all together 
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So, the coefficients increase with increasing k, which makes sense, since increasing k 
means an increasing perturbation. Also, if k = 0 there is no perturbation and all 
coefficients are zero meaning that there is no change to the ground-state wave function. 
Both these points represent a sanity check on our result. 
 
 Note also that the coefficients become small rather quickly owing to the j−5 
scaling of our coefficient expansion. If we consider the dominant contribution from the 
first excited state, j = 2, it is evidently −(64/27π4)k, or about −0.0243k. Higher states 
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make almost negligible contributions, so the net change in the ground-state wave function 
is really rather small. The reason the wave function resists shifting to the left more 
strongly is that such a shift increases the curvature in the right side of the box, and hence 
the kinetic energy goes up. 
 
 Shown below is the graphical depiction of what we have done above for the case 
k = 5. The unperturbed ground-state wave function is shown in red, the unperturbed first 
excited-state wave function in green, and the perturbed ground-state wave function in 
blue. 
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Review and Catch-up 
 
 I'll try to give a recapitulation of key points to be covered by Exam III, but I am 
particularly eager to field questions from the class. Please be prepared to ask about any 
issues that you have found confusing or unclear! 
 
 
Homework (n/a, study for Exam III) 
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Example Problems 
 
1. If Φ is a guess wave function, H is the Hamiltonian, and E0 is the ground-state 

energy, which of the following is/are always true as a consequence of the 
variational principle? 
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 (f) (a) and (b) 

(c) The expectation value of H over Φ 
will be less than E0  

(g) (a) and (e) 

(d) The expectation value of H over Φ 
will be greater than E0 + 1/2 a.u. 

(h) (a), (b), and (e) 

 
 
2. What is < 1/r > in a.u. for the one-electron wave function 

! 

"1s r,#,$;%( ) = e&%r? 
 
(a) 0 (e) 4π / (2α)2 
(b) 1/2 (f) α 
(c) 1 (g) 2α 
(d) π / α (h) None of the above 
 

(A useful formula: 
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3. Which of the below statements is/are true? 
 
(a) Fermions have integer spin (e) Ψ = a(1)b(2) – b(1)a(2) is a valid 

fermion wave function 
(b) Fermion wave functions must be 

symmetric  
(f) Boson wave functions vanish when 

two particles have identical one-
particle wave functions 

(c) Bosons have half-integer spin (g) (a), (b), (c), and (e) 
(d) Boson wave functions can be 

symmetric or antisymmetric 
(h) All of the above 
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4. For a three-electron wave function Ψ, <Ψ|S2|Ψ> = 0.75. Which of the below 
statements about Ψ is/are true? 
 
(a) The quantum number S = 1/2 (e) Ψ is a doublet state 
(b) Ψ is not a pure spin state (f) (a) and (e) 
(c) Ψ cannot be normalized (g) (c) and (d) 
(d) Ψ cannot be antisymmetric (h) All of the above 
 


