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Lecture 25, March 29, 2006 
 
(Some material in this lecture has been adapted from Cramer, C. J. Essentials of 
Computational Chemistry, Wiley, Chichester:  2002; pp. 96-109.) 
 
 
Recapitulation of the Variational Principle and the Secular Equation 
 
 Recall that for any system where we cannot determine exact wave functions by 
analytical solution of the Schrödinger equation (because the differential equation is 
simply too difficult to solve), we can make a guess at the wave function, which we will 
designate Φ, and the variational principle tells us that the expectation value of the 
Hamiltonian for Φ is governed by the equation 
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where E0 is the correct ground-state energy. 
 
 Not only does this lower-limit condition provide us with a convenient way of 
evaluating the quality of different guesses (lower is better), but it also permits us to use 
the tools of variational calculus to identify minimizing values for any parameters that 
appear in the definition of Φ. 
 
 In the LCAO (linear combination of atomic orbitals) approach, the parameters are 
coefficients that describe how molecular orbitals (remember, orbital is another word for a 
one-electron wave function contributing to a many-electron wave function) are built up as 
linear combinations of atomic orbitals. In particular, many-electron wave functions Φ can 
be written as antisymmetrized Hartree products—i.e., Slater determinants—of such one-
electron orbitals φ, where the one-electron orbitals are defined as 
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where the set of N atomic-orbital basis functions ϕi is called the “basis set” and each has 
associated with it some coefficient ai, where we will use the variational principle to find 
the optimal coefficients. 
 

To be specific, for a given one-electron orbital we evaluate 
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where the shorthand notation Hij and Sij is used for the resonance and overlap integrals in 
the numerator and denominator, respectively. 
 
 If we impose the minimization condition 
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we get N equations which must be satisfied in order for equation 25-4 to hold true, 
namely 
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these equations can be solved for the variables ai if and only if  
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= 0  (25-6)  

 
where equation 25-6 is called the secular equation. There are N roots (i.e., N different 
values of E) which permit the secular equation to be true. For each such value Ej there 
will be a different set of coefficients, aij, which can be found by solving the set of linear 
equations 25-5 using that specific Ej, and those coefficients will define an optimal 
associated wave function φj within the given basis set. 
 
 The steps in a practical calculation are: 
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(1) Select a set of N basis functions.  

(2) For that set of basis functions, determine all N2 values of both Hij and Sij.  

(3) Form the secular determinant, and determine the N roots Ej of the secular 

equation.  

(4) For each of the N values of Ej, solve the set of linear eqs. 25-5 in order to 

determine the basis set coefficients aij for that MO. 
 
 
Hückel Theory 
 
 To further illuminate the LCAO variational process, we will carry out the steps 
outlined above for a specific example. To keep things simple (and conceptual), we 
consider a flavor of molecular orbital theory developed in the 1930s by Erich Hückel to 
explain some of the unique properties of unsaturated and aromatic hydrocarbons. In order 
to accomplish steps (1)-(4) of the last section, Hückel theory adopts the following 
conventions: 
 
(a) The basis set is formed entirely from parallel carbon 2p orbitals, one per atom. 
[Hückel theory was originally designed to treat only planar hydrocarbon π systems, and 
thus the 2p orbitals used are those that are associated with the π system.] 
 
(b) The overlap matrix is defined to be 
 

 

Sij = ! ij  (25-7)  
 
Thus, the overlap of any carbon 2p orbital with itself is unity (i.e., the p functions are 
normalized), and that between any two different p orbitals is zero (so we won't waste 
time computing overlap integrals, we'll just assume the basis functions to be 
orthonormal). 
 
(c) Matrix elements Hii are set equal to the negative of the ionization potential of the 
methyl radical CH3•, i.e., the orbital energy of the singly occupied 2p orbital in the 
prototypical system defining sp2 carbon hybridization. This choice is consistent with our 
earlier discussion of the relationship between this matrix element and an ionization 
potential. This energy value, which is defined so as to be negative, is rarely actually 
written as a numerical value, but is instead represented by the symbol α. For those who 
like working with actual numbers, α = –9.9 eV. 
 
(d) Matrix elements Hij between nearest neighbors are also derived from 
experimental information. A 90° rotation about the π bond in ethylene removes all of the 
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bonding interaction between the two carbon 2p orbitals. That is, the (positive) cost of the 
following process,  
 

  
  E = Eπ E = 2Ep 

 
is ΔE = 2Ep – Eπ. The (negative) stabilization energy for the pi bond is distributed 
equally to the two p orbitals involved (i.e., divided in half) and this quantity, termed β, is 
used for Hij between neighbors. (Note, based on our definitions so far, then, that Ep = α 
and Eπ = 2α+2β.) Again, for those who like numbers, the π bond energy in ethylene is 
about 60 kcal mol–1, which is 2.6 eV. Dividing that up between the two carbon atoms 
results in β = –1.3 eV. 
 
(e) Matrix elements Hij between carbon 2p orbitals more distant than nearest 
neighbors are set equal to zero. 
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The Allyl π System 
 
 Let us now apply Hückel MO theory to the particular case of the allyl system, 
C3H3, as illustrated in the figure on the previous page. Because we have three carbon 
atoms, our basis set is determined from convention (a) and will consist of 3 carbon 2p 
orbitals, one centered on each atom. We will arbitrarily number them 1, 2, 3, from left to 
right for bookkeeping purposes. 
 

The basis set size of 3 implies that we will need to solve a 3 x 3 secular equation. 
Hückel conventions (b)-(e) tell us the value of each element in the secular equation 
(H11 = H22 = H33 = α, H12 = H21 = H23 = H32 = β, H13 = H31 = 0, S11 = S22 = S33 = 1, 
all other S values are 0) so that eq. 25-6 is rendered as  
 

 

! – E " 0

" ! – E "

0 " ! – E

= 0  (25-8)  

 
The use of the Kronecker delta to define the overlap matrix ensures that E appears only in 
the diagonal elements of the determinant. Since this is a 3 x 3 determinant, it may be 
expanded using Cramer’s rule as 
 

 (α – E)3 + (β2 • 0) + (0 • β2) – [0 • (α – E) • 0] – β2(α – E) – (α – E)β2 = 0 (25-9) 
 
which is a fairly simple cubic equation in E that has three solutions, namely 
 

 E = ! + 2", !, ! – 2"  (25-10)  
 
Since α and β are negative by definition, the lowest energy solution is ! + 2" . To find 
the MO associated with this energy, we employ it in the set of linear equations 25-5, 
together with the various necessary H and S values already noted above to give 
 
a1 ! – ! + 2"( ) •1[ ] + a2 " – ! + 2"( ) • 0[ ] + a3 0 – ! + 2"( ) • 0[ ] = 0

a1 " – ! + 2"( ) • 0[ ] + a2 ! – ! + 2"( ) •1[ ] + a3 " – ! + 2"( ) • 0[ ] = 0
a1 0 – ! + 2"( ) • 0[ ] + a2 " – ! + 2"( ) • 0[ ] + a3 ! – ! + 2"( ) •1[ ] = 0

 (25-11)  

 
(the first equation comes from k = 1, the second from k = 2, and the third from k = 3). 
Some fairly trivial, if tedious, algebra reduces these equations to 
 

 

a2 = 2a1

a3 = a1
 (25-12)  
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While there are infinitely many values of a1, a2, and a3 which satisfy eq. 25-12, imposing 
the requirement that the wave function be normalized provides a final constraint in the 
form of 
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The unique values satisfying both eqs. 25-12 and 25-13 are 
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where we have now emphasized that these coefficients are specific to the lowest energy 
molecular orbital by adding the second subscript “1”. Since we now know both the 
coefficients and the basis functions, we may construct the lowest energy molecular 
orbital, i.e.,  
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which is illustrated in the figure above. 
 
 By choosing the higher energy roots of eq. 25-8, we may solve the sets of linear 
equations analogous to eq. 25-11 in order to arrive at the coefficients required to 
construct φ2 (from E = α) and φ3 (from E =  ! – 2" ). Although the algebra is left as a 
homework problem, the results are 
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where these orbitals are also illustrated in the figure above. The three orbitals we have 
derived are  the bonding, non-bonding, and antibonding molecular orbitals of the allyl 
system with which all organic chemists are familiar. 
 

Importantly, Hückel theory affords us certain insights into the allyl system, one in 
particular being an analysis of the so-called “resonance” energy arising from electronic 
delocalization in the π system. By delocalization we refer to the participation of more 
than two atoms in a given MO. Consider for example the allyl cation, which has a total of 
two electrons in the π system. If we adopt a molecular aufbau principle of filling lowest 
energy MOs first and further make the assumption that each electron has the energy of 
the one-electron MO that it occupies (φ1 in this case) then the total energy of the allyl 
cation π system is 2(! + 2" ). Consider the alternative “fully localized” structure for the 
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allyl system, in which there is a full (i.e., doubly-occupied) π bond between two of the 
carbons, and an empty, non-interacting p orbital on the remaining carbon atom (this could 
be achieved by rotating the cationic methylene group 90° so that the p orbital becomes 
orthogonal to the remaining π bond, but that could no longer be described by simple 
Hückel theory since the system would be non-planar—the non-interaction we are 
considering here is purely a thought-experiment). The π energy of such a system would 
simply be that of a double bond, which by our definition of terms above is 2(α + β). 
Thus, the Hückel resonance energy, which is equal to Hπ – Hlocalized, is 0.83β (remember 
β is negative by definition, so resonance is a favorable phenomenon). Recalling the 
definition of β, the resonance energy in the allyl cation is predicted to be about 40% of 
the rotation barrier in ethylene—roughly 25 kcal mol−1. 
 
 We may perform the same analysis for the allyl radical and the allyl anion, 
respectively, by adding the energy of φ2 to the cation with each successive addition of an 
electron, i.e., Hπ(allyl radical) = 2(! + 2" ) + α and Hπ(allyl anion) = 2(! + 2" ) + 2α. 
In the hypothetical fully-π-localized non-interacting system, each new electron would go 
into the non-interacting p orbital, also contributing each time a factor of α to the energy 
(by definition of α). Thus, the Hückel resonance energies of the allyl radical and the allyl 
anion are the same as for the allyl cation, namely, 0.83β. 
 
 Unfortunately, while it is clear that the allyl cation, radical, and anion all enjoy 
some degree of resonance stabilization, neither experiment, in the form of measured 
rotational barriers, nor more complete levels of quantum theory support the notion that in 
all three cases the magnitude is the same. So, there is some aspect of Hückel theory that 
renders it incapable of accurately distinguishing between these three allyl systems. We 
will examine this issue shortly. 
 
 
Homework 
 
To be solved in class:   
 
Find the shapes and energies of the 3 molecular orbitals for the cyclopropenium system. 
Note that this system differs from the allyl system in that it has an additional connectivity 
between atoms 1 and 3. How does this qualitatively change the MO picture for 
cyclopropenyl compared to allyl? Based on your analysis, will the cyclopropenyl anion 
be a singlet or a triplet? (Hint:  to quickly solve the somewhat challenging cubic equation 
in E that comes up in the determinant, try setting E = α + cβ and solve for c.) 
 
To be turned in for possible grading Apr. 7:   
 
Using the third (antibonding) root of the secular equation for the allyl system, verify the 
orbital coefficients given in eq. 25-16. 
 
 


