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Solved Homework 
 
 In the allyl system, we had H11 = H22 = H33 = α, H12 = H21 = H23 = H32 = β, 
H13 = H31 = 0, S11 = S22 = S33 = 1, and all other S values were 0. The difference in 
cyclopropenyl is that carbon atoms 1 and 3 are now neighbors, so that instead of 
H13 = H31 = 0, we have H13 = H31 = β. As a result, the secular equation becomes 
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which expands as 
 
 (α – E)3 + β3 + β3 – [β • (α – E) • β] – β2(α – E) – (α – E)β2 = 0 
 
or 
 
 (α – E)3 – 3β2 (α – E) + 2β3 = 0 
 
 To solve the above cubic equation in E, it is convenient to set E = α + cβ, in 
which case the equation transforms to 
 
 –c3 + 3c + 2 = 0 
 
The roots of this equation are −1 and 2 (it turns out that −1 is a critical point where the 
cubic curve just touches the x axis, so there are only two roots and it must be the case that 
one of these roots represents a two-fold degenerate energy level). So, the allowed energy 
levels are E = α + 2β (lowest energy, since α and β are negative numbers) and α − β 
(higher energy). If we solve for the lowest energy MO we have the linear equations 
 

 

a1 ! – ! + 2"( ) •1[ ] + a2 " – ! + 2"( )• 0[ ] + a3 " – ! + 2"( ) • 0[ ] = 0

a1 " – ! + 2"( )• 0[ ] + a2 ! – ! + 2"( )• 1[ ] + a3 " – ! + 2"( ) • 0[ ] = 0

a1 " – ! + 2"( )• 0[ ] + a2 " – ! + 2"( ) • 0[ ] + a3 ! – ! + 2"( ) •1[ ] = 0
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or 
 

 

! 2a1 + a2 + a3 = 0

a1 ! 2a2 + a3 = 0

a1 + a2 ! 2a3 = 0

 

 
Casual inspection should indicate that this system of equations is solved by the 
relationship a1 = a2 = a3, and the normalization condition can then be solved to set a 
specific value of a1 = a2 = a3 = 3−1/2. 
 
 So the lowest-energy MO has equal contributions from all 3 p orbitals and all 3 
orbitals are in phase. This is illustrated below. 
 
 What about the next energy level, α − β? That gives linear equations 
 

 

a1 ! – ! " #( ) •1[ ] + a2 # – ! " #( ) • 0[ ] + a3 # – ! " #( ) • 0[ ] = 0

a1 # – ! " #( ) • 0[ ] + a2 ! – ! " #( ) •1[ ] + a3 # – ! " #( ) • 0[ ] = 0

a1 # – ! " #( ) • 0[ ] + a2 # – ! " #( ) • 0[ ] + a3 ! – ! " #( ) •1[ ] = 0

 

 
In this case, all 3 equations reduce to 
 
 a1 + a2 + a3 = 0 
 
When this equation is combined with the normalization condition, there are still only two 
equations in 3 unknowns, so we have remaining flexibility. This implies that we have a 
two-fold degenerate energy. We can arbitrarily select one set of coefficients that satisfies 
the linear equation and normalization. Then, since we want the next orbital of that energy 
to be orthogonal to the first, we will have 3 equations (the linear equation, the 
normalization condition, and the orthogonality condition) to determine the coefficients, 
and we will then be done. 
 
 To make life simple, then, let's use our flexibility initially to simply eliminate one 
coefficient. We will set a2 = 0. In that case, we have a1 = −a3. and normalization gives 
values of ±2−1/2 for the coefficients. This orbital is also illustrated below. It has a node at 
carbon 2 and equal, antibonding contributions from carbons 1 and 3. 
 
 For the second orbital of energy α − β, the orthogonality condition with the first is 
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so we see that the orthogonality condition requires a1 = a3 for our third MO. In that case, 
we must have a2 = −2a1(or 3) and normalization of the orbital provides a1 = a3 = 6−1/2 
and a2 = (2/3)−1/2. So, in this orbital, there is π bonding between the smaller p orbital 
contributions from carbons 1 and 3, and π antibonding between each of those p orbitals 
and the twice as large contribution of the p orbital from carbon 2. 
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 So, the final two orbitals look just like those from the allyl system, but the 
connection between carbon atoms 1 and 3 raises the energy of the previously non-
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bonding orbital (because of the new antibonding interaction) and lowers the energy of the 
previously only antibonding orbital (because of the new, but weak, bonding interaction). 
Coincidentally, the two end up degenerate. 
 
 The orbital picture permits us to make many qualitative observations that are very 
important to chemistry. First, it is evident that the cation (with only two electrons in the π 
system) will be very stable. If there were a hypothetical system having one of the p 
orbitals non-interacting, the total energy would simply be 2(α+β) (the usual ethylene π 
bonding energy), but in cyclopropenium cation, the energy is 2(α+2β)—an improvement 
of 2β. Students of organic chemistry will recall the Hückel 4n+2 rule to note that 
cyclopropenium cation satisfies that rule (n = 0) and we call it aromatic and assign it 
special stability. Now, from quantum mechanics, you know why! 
 
 You can also see that the cyclopropenyl anion is likely to be a rather unhappy 
species. Since electrons repel one another, a simple analysis suggests that one would 
want to put one electron into each of the degenerate orbitals (thus keeping them further 
apart). In addition, since we recall from work on the He atom that a triplet is always 
below the open-shell singlet using the same orbitals, we would expect the cyclopropenyl 
anion to be a triplet (this is a reflection of the antiaromaticity of this 4-electron system). 
 
 So, while the cyclopropenyl cation is a well known system, and has been 
employed as a ligand in organometallic chemistry for years, cyclopropenyl anions have 
for the most part avoided any synthesis. The only instances that have permitted 
observation of such species have involved substituting one carbon of the cyclopropenyl 
system with a very strong electron-withdrawing group. This lowers the energy of the p 
orbital on that carbon and lifts the degeneracy of the two high energy orbitals so that the 
system is no longer formally antiaromatic. Such work has been done at the University of 
Minnesota in the labs of Professor Steven Kass using mass spectrometry to identify the 
cyclopropenyl anions in the gas phase. 
 
Many-electron Wave Functions—Hartree Products 
 
In our Hückel theory examples, we derived molecular orbitals and molecular-orbital 
energies using a one-electron formalism, and we then assumed that the energy of a many-
electron system could be determined simply as the sum of the energies of the occupied 
one-electron orbitals (we used our prior knowledge of antisymmetry to limit ourselves to 
two electrons per orbital). We further assumed that the orbitals themselves are invariant 
to the number of electrons in the π system. One might be tempted to say that Hückel 
theory thus ignores electron-electron repulsion. This is a bit unfair, however. By deriving 
our Hamiltonian matrix elements from experimental quantities (ionization potentials and 
rotational barriers) we have implicitly accounted for electron-electron repulsion in some 
sort of average way, but such an approach, known as an “effective Hamiltonian” method, 
is necessarily rather crude. Thus, while Hückel theory continues to find use even today in 
qualitative studies of conjugated systems, it is rarely sufficiently accurate for quantitative 
assessments. To improve our models, we need to take a more sophisticated accounting of 
many-electron effects. 



  26-5 

Let us examine the Schrödinger equation in the context of a one-electron 
Hamiltonian a bit more carefully. When the only terms in the Hamiltonian are the one-
electron kinetic energy and nuclear attraction terms, the operator is “separable” and may 
be expressed as 
 

 
H = hi

i=1

N

!  (26-1)  

 
where N is the total number of electrons and hi is the one-electron Hamiltonian defined 
by 
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1
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where M is the total number of nuclei. 
 
 Eigenfunctions of the one-electron Hamiltonian defined by eq. 26-2 must satisfy 
the corresponding one-electron Schrödinger equation 
 

 
hi!i = "i!i  (26-3)  

 
Because the Hamiltonian operator defined by eq. 26-1 is separable, its many-electron 
eigenfunctions can be constructed as products of one-electron eigenfunctions. That is 
 

   
!HP = "1"2L"N  (26-4)  

 
The eigenvalue of ΨHP is readily found from proving the validity of eq. 26-4, viz., 
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where repeated application of eq. 26-3 is used in proving that the energy eigenvalue of 
the many-electron wave function is simply the sum of the one-electron energy 
eigenvalues. A wave function of the form of eq. 26-4 is called a “Hartree product” wave 
function. Note that eqs. 26-1 to 26-5 provide the mathematical rigor behind the Hückel 
theory example presented more informally above. Note that if every ψ is normalized then 
ΨHP is also normalized, since 

  
!HP

2
= "1

2
"2

2
L "N

2 . 
 
 As noted above, however, the Hamiltonian defined by eqs. 26-3 and 26-4 does not 
include interelectronic repulsion, computation of which is vexing because it depends not 
on one electron, but instead on all possible (simultaneous) pairwise interactions. We may 
ask, however, how useful is the Hartree product wave function in computing energies 
from the correct Hamiltonian? That is, we wish to find orbitals ψ that minimize 
!HP H!HP . By applying variational calculus, one can show that each such orbital ψi 

is an eigenfunction of its own operator hi defined by 
 

 
hi = !

1
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!
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where the final term represents an interaction potential with all of the other electrons 
occupying orbitals {j} and may be computed as 
 

 
Vi j{ } =

! j

rij
"

j#i
$ dr  (26-7)  

 
where ρj is the charge (probability) density associated with electron j. The repulsive third 
term on the r.h.s. of eq. 26-6 is thus exactly analogous to the attractive second term, 
except that nuclei are treated as point charges, while electrons, being treated as wave 
functions, have their charge spread out, so an integration over all space is necessary. 
Recall, however, that ρj = |ψj|2. Since the point of undertaking the calculation is to 
determine the individual ψ, how can they be used in the one-electron Hamiltonians 
before they are known? 
 
 To finesse this problem, Hartree in 1928 proposed an iterative “self-consistent 
field” (SCF) method. In the first step of the SCF process, one guesses the wave functions 
ψ for all of the occupied MOs (AOs in Hartree’s case, since he was working exclusively 
with atoms) and uses these to construct the necessary one-electron operators h. Solution 
of each differential eq 26-6 (in an atom, with its spherical symmetry, this is relatively 
straightforward, and, as noted previously, Hartree was helped by his retired father who 
enjoyed the mathematical challenge afforded by such calculations) provides a new set of 
ψ, presumably different from the initial guess. So, the one-electron Hamiltonians are 
formed anew using these presumably more accurate ψ to determine each necessary ρ, and 
the process is repeated to obtain a still better set of ψ. At some point, the difference 
between a newly determined set and the immediately preceding set falls below some 
threshold criterion, and we refer to the final set of ψ as the “converged” SCF orbitals. 
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(An example of a threshold criterion might be that the total electronic energy change by 
no more than 10−6 a.u., and/or that the energy eigenvalue for each MO change by no 
more than that amount—such criteria are, of course, entirely arbitrary, and it is typically 
only by checking computed properties for wave functions computed with varying degrees 
of imposed “tightness” that one can determine an optimum balance between convergence 
and accuracy—the tighter the convergence, the more SCF cycles required, and the greater 
the cost in computational resources.) 
 
 Notice, from eq. 26-5, that the sum of the individual operators h defined by eq. 
26-6 defines a separable Hamiltonian operator for which ΨHP is an eigenfunction. This 
separable Hamiltonian corresponds to a “non-interacting” system of electrons (in the 
sense that each individual electron sees simply a constant potential with which it 
interacts—the nomenclature can be slightly confusing since the potential does derive in 
an average way from the other electrons, but the point is that their interaction is not 
accounted for instantaneously). The non-interacting Hamiltonian is not a good 
approximation to the true Hamiltonian, however, because each h includes the repulsion of 
its associated electron with all of the other electrons, i.e., hi includes the repulsion 
between electron i and electron j, but so too does hj. Thus, if we were to sum all of the 
one-electron eigenvalues for the operators hi, which according to eq. 26-5 would give us 
the eigenvalue for our non-interacting Hamiltonian, we would double-count the electron-
electron repulsion. It is a straightforward matter to correct for this double-counting, 
however, and we may in principle compute E = !HP H!HP  (where H is the "proper" 
Hamiltonian, instead of that defined by eqs. 26-1 and 26-6) not directly but rather as 
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where i and j run over all the electrons, εi is the energy of MO i from the solution of the 
one-electron Schrödinger equation using the one-electron Hamiltonian defined by eq. 26-
6, and we have replaced ρ with the square of the wave function to emphasize how it is 
determined (again, the double integration over all space derives from the wave function 
character of the electron—the double integral appearing on the r.h.s. of eq. 26-8 is simply 
the “Coulomb integral” Jij). In spite of the significant difference between the non-
interacting Hamiltonian and the correct Hamiltonian, operators of the former type have 
important utility, and we will may have occasion to see them again later in the course. 
 
 
Homework 
 
To be solved in class:   
 
A typical starting point for a Hartree calculation is to use a one-electron hydrogenic 
orbital for each electron. If one does that for He, what is Vi at the first step for a 1s 
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electron in He if the other electron is also in the 1s orbital? How will Vi differ in the next 
step? How would things be different if the other electron were in the 2s orbital? 
 
To be turned in for possible grading Apr. 7:   
 
What is the Hartree-product wave function for 2 non-interacting quantum mechanical 
harmonic oscillators (QMHOs) of reduced mass 1 a.u. in a potential having a force 
constant of 1 a.u., where the first QMHO is in the ground state and the second is in the 
first excited state? Determine the energy of the two QMHO system as an expectation 
value of the Hartree-product wave function. Is the correct Hamiltonian for this system 
separable into one-QMHO terms? If the QMHOs were interacting, explain how you 
could use perturbation theory to determine the energy of the system correct to first order 
(you don’t have to actually do it, just explain how to do it). 


