
Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits 
 Spring Semester 2006 

Christopher J. Cramer 
 

Lecture 27, April 3, 2006 
 
(Some material in this lecture has been adapted from Cramer, C. J. Essentials of 
Computational Chemistry, Wiley, Chichester:  2002; pp. 116-118.) 
 
 
Solved Homework 
 
 In the ground-state He atom at the first step, each electron is assumed to occupy a 
hydrogenic 1s orbital. Recall that, with Z = 2 for He, this orbital is defined as 
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The square of this wave function defines the charge cloud that creates the repulsive 
potential. Thus, at any point r0 the total repulsion E felt by a point charge q at point r0 
will be 
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where somewhat sloppy notation has been used to try to keep things simpler. The 
distance between point r0 and any point in the integration depends on all three polar 
coordinates (not just r), so the integral is not necessarily easy to solve. 
 
 What is easier to notice is that, since the electron we are interested in is itself also 
delocalized (and not a point charge q), the total repulsion is a double integral, where we 
integrate over the space of the first electron the repulsion felt by the fractional charge at 
any point defined by the equation above that involves integrating over the space of the 
second electron. The result is just our old friend the Coulomb integral 
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where each dr now stands for a complete spherical polar differential volume element. The 
solution to this integral is fairly painful, but can be achieved through some heroic 
coordinate transformations. We’ll forego the pleasure. 
 
 Since 1s orbitals have their maximum amplitudes at the nucleus, electron 1 will be 
most repelled by electron 2 near the nucleus, and less so further away. So, electron 1 will 
tend to localize its density further from the nucleus than would be true were electron 2 
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not to be there (which is what ψ100 assumes, since it is a one-electron orbital, not a two-
electron orbital). We've seen this previously in discussion of the variational process 
where we treated the He atomic number as a parameter and determined it to be 1.69—this 
drop from 2 causes the electron to localize further away. 
 
 Of course, each electron does this to the other, so in the next step, the repulsion 
near the nucleus felt by each will be reduced (because each electron is now spread out 
further), and after step 2 the electron will contract back in a bit. Now, at step 3, since 
charge has reconcentrated near the nucleus, the electronic orbitals will expand out a little 
bit more, and this will continue in smaller and smaller incremental steps until we declare 
convergence to have been achieved based on the increment being sufficiently small. 
 
 If the original second electron had been in a 2s orbital instead of a 1s, it would 
have repelled electron 1 considerably less, since it would have much smaller amplitude 
near the nucleus. The original electron 1 would not have expanded as far outward at step 
2, and in the final result we would presumably find electron 1 to have greater density near 
the nucleus than in the 1s2 case. 
 
 
Some Spin Review 
 
 The Hartree product wave function fails to be rigorous in two respects. First, it is 
not antisymmetric. Second, it takes no obvious account of spin. 
 
 Recall that all electrons are characterized by a spin quantum number. The electron 
spin function is an eigenfunction of the operator Sz and has only two eigenvalues, ±  h /2; 
the spin eigenfunctions are orthonormal and are typically denoted as α and β (not to be 
confused with the α and β of Hückel theory!) The spin quantum number is a natural 
consequence of the application of relativistic quantum mechanics to the electron (i.e., 
accounting for Einstein’s theory of relativity in the equations of quantum mechanics), as 
first shown by Dirac. Another consequence of relativistic quantum mechanics is the so-
called Pauli exclusion principle, which is usually stated as the assertion that no two 
electrons can be characterized by the same set of quantum numbers. Thus, in a given MO 
(which defines all electronic quantum numbers except spin) there are only two possible 
choices for the remaining quantum number, α or β, and thus only two electrons may be 
placed in any MO. 
 
 We can account for antisymmetry and spin by formation of determinantal wave 
functions having spin-orbital elements according to 
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where N is the total number of electrons and χ is a spin-orbital, i.e., a product of a spatial 
orbital and an electron spin eigenfunction. A still more compact notation that finds 
widespread use is 
 

 
  
!SD = "1"2"3L"N  (27-2) 

 
where the prefactor (N!)−1/2 is implicit. Furthermore, if two spin orbitals differ only in 
the spin eigenfunction (i.e., together they represent a doubly filled orbital) this is typically 
represented by writing the spatial wave function with a superscript 2 to indicate double 
occupation. Thus, if χ1 and χ2 represented α and β spins in spatial orbital ψ1, one would 
write 
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 Perhaps the most important thing to recall about determinantal wave functions is 
that the evaluation of their energies (as expectation values of the Hamiltonian operator) 
introduces exchange integrals Kab. The exchange integral differs from the Coulomb 
integral (Jab) insofar as it does not involve the products of square moduli of individual 
orbitals divided by the distance between points (see homework above for an example), 
but instead involves the product of one orbital with another orbital and a distance 
operator. 
 
 To try to offer a geometric picture, consider the below diagram in one-dimension. 
Orbitals a and b are gaussian functions centered about different points. Shown at top are 
the orbitals themselves, and immediately below are shown the square moduli of the  
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 orbitals. So, the Coulomb integral may be thought of as parsing over the curve for 
electron 1 in orbital a, and at every point along that curve, one runs over all possible 
points for orbital b and sums up the product of the amplitudes of the two square moduli 
(a held fixed for its own point, b varying over its whole range) divided by the distance 
between the fixed a point and the varying b point. The double integration follows from 
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adding all of the sums for all possible points in a together. One can readily see that if the 
gaussians become very, very narrow, and fairly far apart, the result is Coulomb’s law:  
the only parts of the double integral that will not be zero for one function or the other will 
be when they are very near the separation between their maxima, and the total charge is 
confined in that small region. Because Coulomb’s law only drops off as 1/r, significant 
interaction energies can remain even over fairly large distances. 
 
 What about the exchange integral? In this case, we have 
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so the function we are interested in is a times b. If a and b don’t have much overlap, the 
product of the two is nearly zero everywhere. Even without doing a double integration 
dividing by distances between points, one can see that this integral will become small 
very quickly as the separation between a and b increases (see figure above). So, the 
exchange integral is only very important when a and b are quite close to one another. 
Remember that the exchange integral dictates how much “happier” the system is to have 
two same-spin electrons close to one another rather than two opposite-spin electrons. 
Antisymmetry ensures that two same spin electrons can never be too close (or the wave 
function would vanish when the orbitals became the same), but does not require two 
different-spin electrons to be separated (since they have different spin quantum numbers). 
 
 As a final word on this subject, some of you may be wondering why the Coulomb 
and exchange integrals are not infinite, since it is possible for r12, the distance between 
the two electrons, to be zero! The slightly tricky answer is that, as r12 goes to zero, the 
volume elements in the integration go to zero faster than 1/r12 goes to infinity, so no 
singularity is introduced. Another miracle of quantum mechanics... 
 
 
The Hartree-Fock Method 
 
 Fock first proposed the extension of Hartree’s SCF procedure to Slater 
determinantal wave functions. Just as with Hartree product orbitals, the Hartree-Fock 
(HF) MOs can be individually determined as eigenfunctions of a set of one-electron 
operators, but now the interaction of each electron with the static field of all of the other 
electrons (this being the basis of the SCF approximation) includes exchange effects on the 
Coulomb repulsion. Some years later, in a paper that was critical to the further 
development of practical computation, Roothaan described matrix algebraic equations 
that permitted HF calculations to be carried out using a basis set representation for the 
MOs. We will forego a formal derivation of all aspects of the HF equations, and simply 
present them in their typical form for closed-shell singlet systems (i.e., all electrons spin-
paired, 2 per occupied orbital) with wave functions represented as a single Slater 
determinant (which is always possible for a closed-shell wave function). This formalism 
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is called “restricted Hartree-Fock” (RHF); alternative formalisms are available for other 
kinds of spin states, but we may not have a chance to get to them. 
 
 The one-electron Fock operator is defined for each electron i as 
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where the final term, the HF potential, is 2Ji−Ki, and the Ji and Ki operators are defined 
so as to compute the Jij and Kij integrals previously defined above for all other electrons 
j. In particular 
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At first glance, these operators should look a bit strange. The Dirac brackets seem to 
involve the coordinates of two electrons, i and j, but there are not wave functions and 
their complex conjugates for both electrons inside the brackets. However, if we left 
multiply by the HF orbital ψi for the ith electron and then integrate, we have the proper 
results 
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 To determine the MOs using the Roothaan approach, we follow a procedure 
analogous to that previously described for Hückel theory. First, given a set of N basis 
functions, we solve the secular equation 
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to find its various roots Ej. In this case, the values for the matrix elements F and S are all 
computed explicitly. For each root, there will be a solution to the linear equations defined 
by the variational theorem and solving those equations will give us coefficients for 
writing an MO with that energy as a linear combination of the basis functions. 
 
 Matrix elements S are overlap matrix elements we have seen before. For a general 
matrix element Fµν (we here adopt a convention that basis functions are indexed by 
lower-case Greek letters, while MOs are indexed by lower-case Roman letters) we 
compute 
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The kinetic energy and nuclear attraction terms are so-called one-electron integrals 
(because integration is over a single set of spherical polar coordinates for a single 
electron). The notation (µν | λσ) implies the two-electron integral 
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where φµ and φν represent the probability density of one electron and φλ and φσ the other. 
The exchange integrals (µλ | νσ) are preceded by a factor of 1/2 because they are limited 
to electrons of the same spin while Coulomb interactions are present for any combination 
of spins. 
 
 The final sum in eq. 27-9 weights the various so-called “four-index integrals” by 
elements of the “density matrix” P. This matrix in some sense describes the degree to 
which individual basis functions contribute to the many-electron wave function, and thus 
indicates how energetically important the Coulomb and exchange integrals should be 
(i.e., if a basis function fails to contribute in a significant way to any of the occupied 
MOs, clearly integrals involving that basis function should be of no energetic importance 
in the wave function). The elements of P are computed as 
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where the coefficients aζi specify the (normalized) contribution of basis function ζ to MO 
i and the factor of two appears because with RHF theory we are considering only singlet 
wave functions in which all orbitals are doubly occupied. 
 
 At this stage, we have defined how to go about computing each term appearing in 
the Hartree-Fock secular determinant.  Next lecture will focus on the individual terms a 
bit more closely. 
 
 
Homework 
 
To be solved in class:   
 
The matrix element Fµν may be either a diagonal element (µ=ν) or an off-diagonal 
element (µ≠ν). Will the kinetic energy term be larger for a diagonal element, or an off-
diagonal element? Why? What about the nuclear attraction term? 
 
To be turned in for possible grading Apr. 7:   
 
None -- relax for two days (but do the non-graded problem above! It’s conceptual.) 


