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(Some material in this lecture has been adapted from Cramer, C. J. Essentials of 
Computational Chemistry, Wiley, Chichester:  2002; pp. 118-119, 154-158.) 
 
 
Solved Homework 
 
 Consider the diagonal and off-diagonal kinetic energy matrix elements 
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Let's think about what the Laplacian operator does to the function on which it is 
operating. It reports back the sum of second derivatives in all coordinate directions. That 
is, it is a measure of how fast the slope of the function is changing in various directions. 
If two functions µ and ν are far apart, then since good basis functions go to zero at least 
exponentially fast with distance, ν is likely to be very flat where µ is large. The second 
derivative of a flat function is zero. So, every point in the integration will be roughly the 
amplitude of µ times zero, and not much will accumulate. For the diagonal element, on 
the other hand, the interesting second derivatives will occur where the function has 
maximum amplitude (amongst other places) so the accumulation should be much larger. 
Thus, we expect diagonal elements in this case to be larger than off-diagonal elements. 
 
 Analogous arguments can be made for the nuclear attraction integrals.  
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The 1/r operator acting on ν will ensure that the largest contribution to the overall 
integral will come from the nucleus k on which basis function ν resides. Unless µ also 
has significant amplitude around that nucleus, it will multiply the result by roughly zero 
and the whole integral will be small. In this case, however, it is conceivable (i) that off-
diagonal elements involving Z =100 might be larger than diagonal elements about Z =1 
and (ii) that off-diagonal elements involving two basis functions on the same nuclear 
center might compete with diagonal elements involving a more diffuse basis function on 
that center (e.g., a 1s2s interaction on the same atom might be larger than a 5f interaction 
with itself, since the latter is so spread out that its amplitude isn't very large anywhere). 
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 The 2J – K terms are somewhat more subtle to evaluate, but it will still generally 
be the case that diagonal terms will generate larger magnitudes than off-diagonal terms. 
We will not explore the point closely. 
 
 
The Hartree-Fock Self-Consistent Field Procedure 
 
 To find the HF MOs we need to solve the HF secular determinant 
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and find its various roots. We know that we can compute overlap integrals and that Fock 
matrix elements are defined by 
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So, now for the tricky part. 
 
 Remember that the density matrix elements appearing in eq. 28-2 are defined as 
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where the a values are the coefficients of the basis functions in the occupied molecular 
orbitals. 
 
 But, the whole point of solving the secular equation is to find those coefficients. 
So, if we don't know them already, how can we compute the matrix elements, and if we 
do know them already, why are we doing this in the first place? 
 
 This is, of course, the same paradox we saw in the Hartree formalism. And, just as 
in the Hartree method, the HF method follows a self-consistent field (SCF) procedure, 
where first we guess the orbital coefficients (e.g., from an effective Hamiltonian method, 
like Hückel theory or a modification thereof) and then we iterate to convergence. The full 
process is described schematically by the flow-chart on the next page. The flow chart 
includes consideration of optimizing the geometry, but we'll ignore that for now. 
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Choose a basis set

Choose a molecular geometry q(0)

Compute and store all overlap, 
one-electron, and two-electron 

integrals
Guess initial density matrix P(0)

Construct and solve Hartree- 
Fock secular equation

Construct density matrix from 
occupied MOs

Is new density matrix P(n) 

sufficiently similar to old 

density matrix P(n–1) ?

Optimize molecular geometry?

Does the current geometry 
satisfy the optimization 

criteria?

Output data for optimized 
geometry

Output data for
unoptimized geometry

yes

Replace P(n–1) with P(n)

no

yes no

Choose new geometry 
according to optimization 

algorithm

no

yes

 
 
 
 After convergence of the MOs, one can compute the HF energy by evaluating the 
Hamiltonian operator for the HF determinant (the determinant will be formed in the usual 
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way given all the occupied orbitals to enforce antisymmetry). There is, however, a 
slightly easier way, too. If we think about the Fock operator for a particular electron, it is, 
remember 
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It only operates on an electron in the ith orbital, so if we take the expectation value of the 
Fock operator over that orbital—call it εi—it represents the total energy of an electron in 
that orbital. eq. 28-4 includes the attraction of an electron in the orbital to all the nuclei, 
its kinetic energy, and its repulsion with all the other electrons. 
 
 So, if we add up all the ε values for all of the occupied orbitals and double that 
(because in restricted HF we have two electrons in every orbital), we'll have included all 
of the physical contributions to the energy. However, we'll have overcounted electron-
electron repulsion. That's because for an electron in orbital 1, we evaluate the repulsion 
that electron feels from an electron in orbital 2 (and 3, and 4, etc.) But, when we go and 
consider the electron in orbital 2 (and 3, and 4, etc.) we account for that interaction again 
in dictating the energy of electron 2 (etc.) So, we double count all of the electron 
repulsions. Thus, an alternative way of computing the total energy is to add up all of the 
individual orbital energies and deduct half of the total electron repulsion energy (cf. eq. 
26-8). That is 
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 Hartree-Fock theory as constructed using the Roothaan approach is quite beautiful 
in the abstract. This is not to say, however, that it does not suffer from certain chemical 
and practical limitations. It’s chief chemical limitation is the one-electron nature of the 
Fock operators. Other than exchange, all electron correlation is ignored. It is, of course, 
an interesting question to ask just how important such correlation is for various molecular 
properties, and we will examine that later on. 
 
 Furthermore, from a practical standpoint, HF theory posed some very challenging 
technical problems to early quantum chemists. One problem was choice of a basis set. 
The LCAO approach using hydrogenic orbitals remains attractive in principle, however, 
this basis set requires numerical solution of the four-index integrals appearing in the Fock 
matrix elements, and that is a very tedious process (no analytic solution has yet been 
found). Moreover, the number of four-index integrals is daunting. Since each index runs 
over the total number of basis functions, there are in principle N4 total integrals to be 
evaluated, and this quartic scaling behavior with respect to basis-set size proves to be the 
bottleneck in HF theory applied to essentially any molecule. 
 
 Historically, two philosophies began to emerge at this stage with respect to how 
best to make further progress. The first philosophy might be summed up as follows:  The 
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HF equations are very powerful but still, after all, chemically flawed since they ignore 
electron-electron correlation. Thus, other approximations that may be introduced to 
simplify their solution, and possibly at the same time improve their accuracy (by some 
sort of parameterization to reproduce key experimental quantities), are well justified. 
Many quantum chemists continue to be guided by this philosophy today, and it underlies 
the motivation for so-called “semiempirical” MO theories, which, alas, we lack time to 
touch upon. 
 
 The second philosophy essentially views HF theory as a stepping stone on the 
way to exact solution of the Schrödinger equation. HF theory provides a very well 
defined energy, one which can be converged in the limit of an infinite basis set, and the 
difference between that converged energy and reality is the electron correlation energy 
(ignoring relativity, spin-orbit coupling, etc.). It was anticipated that developing the 
technology to achieve the HF limit with no further approximations would not only permit 
the evaluation of the chemical utility of the HF limit, but also probably facilitate moving 
on from that low-altitude base camp to the Schrödinger equation summit. Such was the 
foundation for further research on “ab initio” (Latin for "from the beginning") HF theory. 
Along the way it became clear that, perhaps surprisingly, HF energies could be 
chemically useful. Typically their utility was manifest for situations where the error 
associated with ignoring the correlation energy could be made unimportant by virtue of 
comparing two or more systems for which the errors could be made to cancel. In any 
case, we will examine ab initio HF theory next. 
 
 
Gaussian Orbitals as Basis Functions 
 
 The basis set is the set of mathematical functions from which the wave function is 
constructed. As detailed in this and earlier lectures, each MO in HF theory is expressed as 
a linear combination of basis functions, the coefficients for which are determined from 
the iterative solution of the HF SCF equations (as flowcharted above). The full HF wave 
function is expressed as a Slater determinant formed from the individual occupied MOs. 
In the abstract, the HF limit is achieved by use of an infinite basis set, which necessarily 
permits an optimal description of the electron probability density. In practice, however, 
one cannot make use of an infinite basis set. Thus, much work has gone into identifying 
mathematical functions that allow wave functions to approach the HF limit arbitrarily 
closely in as efficient a manner as possible. 
 
 Efficiency in this case involves three considerations. As noted above, in the 
absence of additional simplifying approximations like those present in semiempirical 
theory, the number of two-electron integrals increases as N4 where N is the number of 
basis functions. So, keeping the total number of basis functions to a minimum is 
computationally attractive. In addition, however, it can be useful to choose basis set 
functional forms that permit the various integrals appearing in the HF equations to be 
evaluated in a computationally efficient fashion. Thus, a larger basis set can still 
represent a computational improvement over a smaller basis set if evaluation of the 
greater number of integrals for the former can be carried out faster than for the latter. 
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Finally, the basis functions must be chosen to have a form that is useful in a chemical 
sense. That is, the functions should have large amplitude in regions of space where the 
electron probability density (the wave function) is also large, and small amplitudes where 
the probability density is small. The simultaneous optimization of these three 
considerations is at the heart of basis set development. 
 
 We previously derived, by solution of the one-electron-atom Schrödinger 
equation, hydrogenic orbitals; recall that they are characterized by exponential decay that 
goes as the first power of the radial distance from the atom on which they are centered. In 
quantum calculations, such orbitals are usually called “Slater”-type orbitals (STOs, 
named for the same Slater who lent his name to the determinantal wave function). While 
STOs have the attractive feature that they are based on hydrogenic atomic orbitals, in ab 
initio HF theory they suffer from a fairly significant limitation. There is no analytical 
solution available for the general four-index integral (eq. 27-10) when the basis functions 
are STOs. The requirement that such integrals be solved by numerical methods severely 
limits their utility in molecular systems of any significant size. 
 
 In 1950, Boys proposed an alternative to the use of STOs. All that is required for 
there to be an analytical solution of the general four-index integral formed from such 
functions is that the radial decay of the STOs be changed from e−r to e−r2. That is, the 
AO-like functions are chosen to have the form of a gaussian function. The general 
functional form of a normalized gaussian-type orbital (GTO) in atom-centered cartesian 
coordinates is 
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where α is an exponent controlling the width of the GTO, and i, j, and k are non-negative 
integers that dictate the nature of the orbital in a cartesian sense. 
 
 In particular, when all three of these indices are zero, the GTO has spherical 
symmetry, and is called an s-type GTO. When exactly one of the indices is one, the 
function has axial symmetry about a single cartesian axis and is called a p-type GTO. 
There are three possible choices for which index is one, corresponding to the px, py, and 
pz orbitals. When the sum of the indices is equal to two, the orbital is called a d-type 
GTO, etc. 
 
 Although they are convenient from a computational standpoint, GTOs have 
specific features that do diminish their utility as basis functions. One issue of key concern 
is the shape of the radial portion of the orbital. For s type functions, GTOs are smooth 
and differentiable at the nucleus (r = 0), but real hydrogenic AOs have a cusp (see Figure 
at end of Lecture 19). In addition, all hydrogenic AOs have a radial decay that is 
exponential in r while the decay of GTOs is exponential in r2; this results in too rapid a 
reduction in amplitude with distance for the GTOs. 
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 As we saw previously in discussing variational atomic calculations, in order to 
combine the best feature of GTOs (computational efficiency) with that of STOs (proper 
radial shape), most of the first basis sets developed with GTOs used them as building 
blocks to approximate STOs. That is, the basis functions ϕ used for SCF calculations 
were not individual GTOs, but instead a linear combination of GTOs fit to reproduce as 
accurately as possible a STO, i.e., 
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where M is the number of gaussians used in the linear combination, and the coefficients c 
are chosen to optimize the shape of the basis function sum and ensure normalization 
(perhaps by variational calculations on the atom, as we did earlier in the course). When a 
basis function is defined as a linear combination of gaussians, it is referred to as a 
“contracted” basis function, and the individual gaussians from which it is formed are 
called “primitive” gaussians. Thus, in a basis set of contracted GTOs, each basis function 
is defined by the contraction coefficients c and exponents α of each of its primitives. The 
“degree of contraction” refers to the total number of primitives used to make all of the 
contracted functions, as described in more detail below. Contracted GTOs when used as 
basis functions continue to permit analytical evaluation of all of the four-index integrals. 
 
 Optimal contraction coefficients and exponents for mimicking STOs with 
contracted GTOs have been developed for a large number of atoms in the periodic table 
using different choices of M in eq. 28-7. These different basis sets are called STO-MG, 
for “Slater-Type Orbital approximated by M Gaussians”. Obviously, the more primitives 
that are employed, the more accurately a contracted function can be made to match a 
given STO. However, note that a four-index two-electron integral becomes increasingly 
complicated to evaluate as each individual basis function is made up of increasingly 
many primitive functions, according to 
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The optimum combination of speed and accuracy (when comparing to calculations using 
STOs) was achieved for M = 3. The figure at the end of Lecture 19 compares a 1s 
function using the STO-3G formalism to the corresponding STO and shows also the 3 
primitives from which the contracted basis function is constructed. STO-3G basis 
functions have been defined for most of the atoms in the periodic table. 
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 Gaussian functions have another feature that would be undesirable if they were to 
be used individually to represent atomic orbitals:  they fail to exhibit radial nodal 
behavior! That is, no choice of variables permits eq. 28-6 to mimic a 2s orbital, which is 
negative near the origin and positive beyond a certain radial distance. Use of a 
contraction scheme, however, alleviates this problem; contraction coefficients c in eq. 28-
7 can be chosen to have either negative or positive sign, and thus fitting to functions 
having radial nodal behavior poses no special challenges. To make a 2s function you 
would simply subtract a tighter gaussian from a looser one, in which case it would indeed 
be negative near the nucleus and positive further away. 
 
 
Homework 
 
To be solved in class:   
 
Consider the water molecule. If we decide to do a calculation on water and use the STO-
3G basis set, how many contracted basis functions will we need in order to minimally 
represent the total number of atomic orbitals spanned by the core and valence electrons of 
the oxygen atom and the two hydrogen atoms? How many one-electron integrals will 
there be that require evaluation? How many two-electron integrals will require 
evaluation? In each of the last two cases, how many primitive integrals will need to be 
evaluated? Do you see anything that makes the workload slightly less onerous than your 
formal analysis? How many occupied orbitals will there be in the final Slater 
determinant? 
 
To be turned in for possible grading Apr. 7:   
 
Repeat the above problem but now for phosphine (PH3) instead of water. 


