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Lecture 29, April 7, 2006 
 
 
Solved Homework 
 
 Water, H2O, involves 2 hydrogen atoms and an oxygen atom. To minimally 
represent hydrogen is simple—one needs only a 1s function. As there are two H atoms, 
we will need two such functions, one centered on each atom. Oxygen has electrons in the 
second principal quantum level, so we will need one 1s, one 2s, and three 2p functions 
(one each of px, py, and pz). So, that's five functions total on O, plus one each on the H 
atoms which is then 7 total. 
 
 The total number of one-electron integrals we need to solve is determined by 
considering that we need kinetic-energy integrals 
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Since both µ and ν can be any one of the 7 basis functions, there are 7 x 7 possible 
kinetic energy integrals (49) and the same number of potential energy integrals for each 
nucleus. As there are 3 nuclei, that is 7 x 7 x 3 = 147 integrals. The grand total of one-
electron integrals is thus 196. 
 
 The two-electron integrals are 
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where now µ, ν, λ, and σ can be any one of the seven basis functions (note that letting 
them be any function covers both all Coulomb and all exchange integrals). There are thus 
7 x 7 x 7 x 7 = 2401 two-electron integrals. 
 
 The numbers computed above involve the contracted basis functions, each of 
which, since the basis is STO-3G, is composed of 3 primitive functions. Thus, for any 
individual one-electron integral, there will be 3 x 3 = 9 separate integrals involving the 
primitives. There are thus 9 x 196 = 1764 individual primitive one-electron integrals. 
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 As for the two-electron integrals, again, every individual integral will require 
considering every possible combination of constituent primitives which is 3 x 3 x 3 x 3 = 
81. Thus, the total number of primitive two-electron integrals is 81 x 2401 = 194,481 
(gulp!) Notice that even for this small molecule the number of two-electron integrals 
totally dominates the number of one-electron integrals. The disparity only increases with 
molecular size. 
 
 All this to find 5 occupied molecular orbitals from which to form a final Slater 
determinant (10 electrons, two to an orbital, so 5 orbitals). 
 
 The situation sounds horrible, but it should be recognized that by using gaussians, 
the solutions to all of the integrals are known to be analytic formulae involving only 
interatomic distances, cartesian exponents, and α values in the gaussians. So, the total 
number of floating-point operations to solve the almost 200,000 grand-total integrals may 
be about 1,000,000. In computer speak that's one megaflop (megaflop = million 
FLoating-point OPerations). A modern digital computer processor can achieve gigaflop 
per second performance, so the computer can accomplish all these calculations in under 
one second. In fact, modern computers are so fast at calculations that it can be faster to 
recompute the integral values than to take the time to write them onto a storage device to 
retrieve the number later! 
 
 The second way in which things can be improved is to recognize that there are 
symmetries of which advantage can be taken. From the turnover rule, it must be true that  
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and the same is true for the nuclear attraction integrals. This reduces the total number of 
contracted integrals to N(N+1)/2 where N is the number of contracted basis functions. For 
water this will be 28, then, instead of 49. When basis functions µ and ν are the same (but 
possibly on different atoms) there will be additional savings from symmetry since they 
will be composed of the same primitives. A similar analysis for the two-electron integrals 
leads to a final number of N(N+1)(N2+N+2)/8. For water, with N = 7, that is 406 
contracted two-electron integrals—a substantial improvement over 2401. Writing 
computer code to take advantage of these symmetries is an important component of 
creating a useful quantum chemistry computational program. 
 
 
A Hartree-Fock Calculation for Water 
 
 To find the HF MOs we need to solve the HF secular determinant 
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and find its various roots. We know that we can compute overlap integrals and that Fock 
matrix elements are defined by 
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 Finally, the density matrix elements appearing in eq. 29-2 are defined as 
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where the a values are the coefficients of the basis functions in the occupied molecular 
orbitals. At the first step of an HF calculation, we simply guess what these are, and after 
that we iterate through solution of the secular determinant to derive new coefficients and 
we continue until we reach self-consistency. 
 
 Let's now do this for water. We'll use a structure close to the experimental 
structure:  O−H bond lengths of 0.95 Å and a valence bond angle at oxygen of 104.5 deg. 
In cartesian coordinates (Å), that puts oxygen at position (0.000, 0.000, 0.116), one 
hydrogen at (0.000, 0.751, −0.465) and the other hydrogen at (0.000, −0.751, −0.465). 
Thus, the origin has been taken as the molecular center of mass, the atoms lie in the yz 
plane (all x coordinates are zero), and the z axis is the symmetry axis of rotation present 
in the water molecule that makes it belong to the symmetry point group C2v (don't worry 
if you don't know anything about symmetry point groups—it won't be important, 
although it does make the calculation more efficient). 
 
 The basis functions we will use are shown in the figure on the next page. Function 
1 is the O 1s, function 2 the O 2s, etc.  
 
 So, with the geometry in hand, we can compute the necessary parts of the secular 
determinant. We begin with the overlap matrix elements. They are 
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 There are many noteworthy features in S. First, it is shown in a lower packed 
triangular form because every element m,n is the same as the element n,m by symmetry, 
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and every diagonal element is 1 because the basis functions are normalized. Note that, 
again by symmetry, every p orbital on oxygen is orthogonal (overlap = zero) with every s 
orbital and with each other, but the two s orbitals do overlap (because they are not 
hydrogenic orbitals—which would indeed be orthogonal as different eigenfunctions of a 
Hermitian operator—they are just different gaussians; S12 = 0.237). Note that the oxygen 
1s orbital overlaps about an order of magnitude less with any hydrogen 1s orbital than 
does the oxygen 2s orbital, reflecting how much more rapidly the first quantum-level 
orbital decays compared to the second. Note that by symmetry the oxygen px cannot 
overlap with the hydrogen 1s functions (positive overlap below the plane exactly cancels 
negative overlap above the plane) and that the oxygen py overlaps with the two hydrogen 
1s orbitals equally in magnitude but with different sign because the p orbital has different 
phase at its different ends. Finally, the overlap of the pz is identical with each H 1s 
because it is not changing which lobe it uses to interact. 
 
 Now, the kinetic energy matrix is (in a.u.) 
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Consistent with our analysis from last lecture's homework, every diagonal term is much 
larger than any off-diagonal term. Note that off-diagonal terms can be negative. That is 
because there is no real physical meaning to a kinetic energy expectation value involving 
two different orbitals. It is just an integral that appears in the complete secular 
determinant. Symmetry again keeps p orbitals from mixing with s orbitals or with each 
other. 
 
 The nuclear attraction matrix is 
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Again, consistent with our prior analysis, diagonal elements are bigger than off-diagonal 
elements. Again, positive values can arise when two different functions are involved even 
though electrons in a single orbital must always be attracted to nuclei and thus diagonal 
elements must always be negative. Note that the p orbitals all have different nuclear 
attractions. That is because, although they all have the same attraction to the O nucleus, 
they have different amplitudes at the H nuclei. The px orbital has the smallest amplitude 
at the H nuclei (zero, since they are in its nodal plane), so it has the smallest nuclear 
attraction integral. The pz orbital has somewhat smaller amplitude at the H nuclei than the 
py orbital because the bond angle is greater than 90 deg (it is 104.5 deg; if it were 90 deg 
the O−H bonds would bisect the py and pz orbitals and their amplitudes at the H nuclei 
would necessarily be the same). Thus, the nuclear attraction integral for the latter orbital 
is slightly smaller than for the former. 
 
 The sum of the kinetic and nuclear attraction integrals is usually called the one-
electron or core part of the Fock matrix and abbreviated h (i.e., h = T + V). One then 
writes F = h + G where F is the Fock matrix, h is the one-electron matrix, and G is the 
remaining part of the Fock matrix coming from the two-electron four-index integrals. 
 
 To compute those two-electron integrals, however, we need the density matrix, 
which itself comes from the occupied MO coefficients. So, we need an initial guess at 
those coefficients. We can get such a guess many ways—the guess listed below is from a 
model like Hückel theory that goes beyond just π systems but that is not iterative. It 
provides: 
 
 Occupied MO coefficients at cycle   1. 
          1            2            3            4            5 
   1  .994311     -.232461      .000000     -.107246      .000000 
   2  .025513      .833593      .000000      .556639      .000000 
   3  .000000      .000000      .000000      .000000     1.000000 
   4  .000000      .000000      .607184      .000000      .000000 
   5 -.002910     -.140863      .000000      .766551      .000000 
   6 -.005147      .155621      .444175     -.285923      .000000 
   7 -.005147      .155621     -.444175     -.285923      .000000 
 
So, MO 1 is very nearly a pure oxygen 1s orbital, MO 2 is mostly a pure 2s orbital with 
small contributions from the H 1s orbitals, MO 3 is a bonding combination of the O 2py 
and the H 1s orbitals (note that their coefficients change sign because the p orbital also 
changes sign—that's what makes the overlap bonding!) MO 4 is another bonding orbital 
between the 2s polarized by the 2pz and the H 1s orbitals. Finally, MO 5 is the pure O 2px 
orbital. This is all the occupied orbital coefficients so we can compute the density matrix 
using eq. 29-3 and we obtain 
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With P, we can compute the remaining contribution of G to the Fock matrix. We will not 
list all 406 two-electron integrals here... Instead, we will simply present the Fock matrix 
as 
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So, we're finally ready to solve the secular determinant, since we have F and S fully 
formed. When we do that, and then solve for the MO coefficients for each root E, we get 
new occupied MOs 
 
 Occupied MO coefficients at cycle   2. 
          1            2            3            4            5 
   1  .994123     -.233041      .000000     -.103527      .000000 
   2  .026666      .834174      .000000      .541326      .000000 
   3  .000000      .000000      .000000      .000000     1.000000 
   4  .000000      .000000      .608401      .000000      .000000 
   5 -.004400     -.131110      .000000      .774771      .000000 
   6 -.006039      .156851      .443140     -.279656      .000000 
   7 -.006039      .156851     -.443140     -.279656      .000000 
 
If you compare these coefficients to those above, you can see that they have not changed 
much in a qualitative way, but there are quantitative changes in many places. So, we 
iterate again, and again, and again, until we are satisfied that further iterations will not 
change either our (i) energy, (ii) density matrix, or (iii) MO coefficients (it’s up to the 
quantum chemist to decide what is considered satisfactory). 
 
 In our water calculation, if we monitor the energy at each step we find: 
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E(RHF) =  –74.893 002 803     A.U. after    1 cycles 
E(RHF) =  –74.961 289 145     A.U. after    2 cycles 
E(RHF) =  –74.961 707 247     A.U. after    3 cycles 
E(RHF) =  –74.961 751 946     A.U. after    4 cycles 
E(RHF) =  –74.961 753 962     A.U. after    5 cycles 
E(RHF) =  –74.961 754 063     A.U. after    6 cycles 
E(RHF) =  –74.961 754 063     A.U. after    7 cycles 
 
 So, our original guess is really not too bad—off by a bit less than 0.1 a.u. or 
roughly 60 kcal mol−1. Our guess energy is too high, as the variational principle 
guarantees that it must be. Our first iteration through the secular determinant picks up 
nearly 0.07 a.u., our next iteration an additional 0.000 42 or so, and by the end we are 
converged to within 1 nanohartree (0.000 000 6 kcal mol−1). 
 
 We can break the energy down into its four components: 
 
Electron kinetic energy:  74.606 167 403 
Electron-nuclear attraction energy:  –197.098 028 755 
Electron-electron repulsion energy:  38.265 406 023 
Nuclear-nuclear repulsion energy:  9.264 701 265 
 
 Note that the first term is <T> and the sum of the next three terms is <V>. So, we 
can ask whether the wave function satisfies the virial theorem –2<T> = <V>. We see that 
–2<T> = –149.212 334 806 and <V> = –197.098 028 755 + 38.265 406 023 + 9.264 701 
265 = –149.567 921 466. So, the virial theorem is not satisfied exactly (as is typical for a 
non-exact wave function) but it is satisfied to within about 0.5%. 
 
 Having converged the SCF equations, we have final MOs from which to form our 
Slater-determinantal wave function. The final MO coefficients for all MOs (not just the 
occupied ones) are 
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 Final MOs: 

                           1         2         3         4         5 

     EIGENVALUES --   -20.24094  -1.27218   -.62173   -.45392   -.39176 

         1               .99411   -.23251    .00000   -.10356    .00000 

         2               .02672    .83085    .00000    .53920    .00000 

         3               .00000    .00000    .00000    .00000   1.00000 

         4               .00000    .00000    .60677    .00000    .00000 

         5              -.00442   -.13216    .00000    .77828    .00000 

         6              -.00605    .15919    .44453   -.27494    .00000 

         7              -.00605    .15919   -.44453   -.27494    .00000 

                           6         7 

     EIGENVALUES --      .61293    .75095 

         1              -.13340    .00000 

         2               .89746    .00000 

         3               .00000    .00000 

         4               .00000    .99474 

         5              -.74288    .00000 

         6              -.80246   -.84542 

         7              -.80246    .84542 

 
where "eigenvalue" refers to the energy of one electron in the MO. Remember that the 
sum of all of the occupied MO energies should be an underestimation of the total 
electronic energy because electron-electron repulsion will have been double counted. So, 
if we sum the occupied orbital energies (times two, since there are two electrons in each 
orbital), we get 2(–20.24094 – 1.27218 – 0.62173 – 0.45392 – 0.39176) = –45.961 060. If 
we now subtract the electron-electron repulsion energy 38.265 406 we get –84.226 466. 
If we add the nuclear repulsion energy 9.264 701 to this we get a total energy –74.961 
765. The difference between this and the converged result above (–74.961 754) can be 
attributed to rounding in the MO energies, which are truncated after 5 places. 
 
 Notice that the 5 occupied MOs all have negative energies. So, their electrons are 
bound within the molecule. The unoccupied MOs (called "virtual" MOs) all have positive 
energies, meaning that the molecule will not spontaneously accept an electron from 
another source. This is certainly in keeping with our expectations. Water neither 
spontaneously gives up nor grabs electrons. 
 
 Next time, we will look more carefully at the orbitals themselves and at the 
information contained within the wave function. 
 
 
Homework 
 
To be solved in class:   
 
Use eq. 29-3 and the initial guess MO coefficients to verify that P21 in eq. 29-7 is –0.456. 
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To be turned in for possible grading Apr. 14:   
 
What is the value of P52 for water after the first SCF step (i.e., at cycle 2)? By what 
percentage did it change compared to the initial guess? By what percentage did the total 
energy change for this same step? 


