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Solved Homework 
 
 An extra electron would be expected to localize in the lowest-energy unoccupied 
molecular orbital (LUMO). In water, that is orbital 6. The appearance of orbital 6 is 
 

 
 
This orbital is antibonding between oxygen and the two hydrogen atoms, so filling it 
would be expected to lengthen the O–H bonds. A good way to think about the quantum 
mechanical rationale behind the lengthening of the bonds is that this decreases the 
curvature of the orbital wave function associated with the nodes (by moving the nodes 
further from one another) and thereby lowers the kinetic energy. 
 
 The same argument (the decrease in kinetic energy associated with moving the 
nodes further from one another) suggests that one would expect the bond angle at oxygen 
to open up to be wider.  
 
 The geometry of the water radical anion (from an independent computation) has 
bond lengths of 1.274 Å and an HOH angle of 135.4 deg. This agrees with our analysis 
based on the LUMO. 
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Other Computed Properties—Partial Atomic Charges 
 
 An enormous amount of chemical reactivity can ultimately be rationalized by a 
rather simple observation:  positively charged things like to associate with negatively 
charged things and vice versa, but charges of like sign repel one another. This simple 
precept explains most acid/base reactions, bimolecular nucleophilic substitution (as we'll 
see in more detail below), ester hydrolysis, and many other reactions at a mechanistic 
level. As such, a key property about which chemists like to think is the so-called partial 
charge associated with an atom. Thus, for example, in formaldehyde, H2C=O, we know 
that the C=O double bond is polarized in a way that makes the oxygen end more negative 
and the carbon end more positive, and that's why nucleophilic reagents add to the carbon 
atom of carbonyl groups. In principle, we might try to quantify that polarization by 
assigning partial charges to each atom (typically being fractional in magnitude, e.g., 
+0.25 for C and –0.25 for O, ignoring the H atoms for the moment). Part of the driving 
force for this conceit is that it allows one to conveniently ignore the wave character of the 
electrons and deal only with the pleasantly more particulate atoms, these atoms reflecting 
electronic distribution by the degree to which they carry positive or negative charge.  
 
 From quantum mechanics, at least as associated with Hartree-Fock calculations, 
we have a natural way to come up with quantitative charges on atoms because we have 
occupied orbitals that are made up of basis functions on different atoms. So, if basis 
functions on oxygen are used more than basis functions on carbon for the occupied 
orbitals, we'd see more charge on the oxygen than the carbon. Let's look at this in a bit 
more detail. 
 
 Dividing the electrons up and assigning them to specific atoms is called 
"population analysis". One of the first such schemes for such a partitioning was proposed 
by R. S. Mulliken in 1955, and this method of population analysis now bears his name. 
Conceptually, it is very simple, with the electrons being divided up amongst the atoms 
according to the degree to which different AO basis functions contribute to the overall 
wave function. Note that in restricted Hartree-Fock theory we may compute the total 
number of electrons N as 
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since each normalized, occupied molecular orbital ψ contains two electrons. If we now 
replace each ψ by its linear expansion in AO basis function we have 
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From the last line of eq. 31-2, we see that we may divide the total number of electrons up 
into two sums, one including only squares of single AO basis functions, the other 
including products of two different AO basis functions. Clearly, electrons associated with 
only a single basis function (i.e., terms in the first sum in parentheses on the r.h.s. of the 
last line of eq. 31-2) should be thought of as belonging entirely to the atom on which that 
basis function resides. As for the second term, which represents the electrons “shared” 
between basis functions, Mulliken suggested that one might as well divide these up 
evenly between the two atoms on which basis functions r and s reside. If we follow this 
prescription and furthermore divide the basis functions up over atoms k so as to compute 
the atomic population Nk, eq. 31-2 becomes 
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Note from the definition of the density matrix (eq. 29-3) that this can also be written 
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 Now, let's recall the density and overlap matrices for water. The overlap matrix 
we've already seen. 
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The final density matrix is 
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Let's compute the partial atomic charge for hydrogen atom a. The only basis function 
entirely on Ha is #6, so P66 contributes 0.597 electrons as belonging to Ha. There is only 
one basis function on Ha, so we don't need to worry about the second summation in eq. 
31-4. As for the last term, we need P61S61 + P62S62 + P63S63 + P64S64 + P65S65 + 
P67S67 = –0.015•0.055 + –0.032•0.479 + 0•0 + 0.539•0.313 + –0.470•–0.242 + –
0.193•0.256 = 0.217. Thus, the total number of electrons on Ha is 0.597 + 0.217 or 0.814. 
We compute partial atomic charge q as 
 

 qk = Zk ! Nk  (31-7)  
 
For H, Z = 1, so the partial atomic charge is 1 – 0.814 = 0.186. By symmetry it is clear 
that this will also be the charge on Hb, and, since the water molecule has a net charge of 
zero, it must be the case that the partial atomic charge on O is equal to the opposite of the 
sum of the charges on the H atoms, or –0.372. These charges are qualitatively as we 
expect them to be:  oxygen is partially negative and the hydrogen atoms are partially 
positive. Mulliken population analysis is very simple and continues to be used 
extensively for assessing molecular polarity in quantum calculations. 
 
 
Other Computed Properties—Multipole Moments 
 
In cartesian coordinates, the expectation values of multipole moment operators are 
computed as  
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where the sum of k, l, and m determines the type of moment (0 = monopole, 1 = dipole, 2 
= quadrupole, etc.), Zi is the nuclear charge on atom i, and the integration variable r 
contains the x, y, and z coordinates of all of the electrons j. When Ψ is expressed as a 
single Slater determinant, we may write 
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where ψj and rj are the molecular orbital occupied by electron j and its cartesian 
coordinate system, respectively. 
 
 The simplest moment to evaluate is the monopole moment, which has only the 
component k=l=m=0, so that the operator becomes 1 and, independent of coordinate 
system, we have 
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where N is the total number of electrons (the simplification of the second term on the 
r.h.s. follows from the normalization of the MOs). The monopole moment is thus the 
difference between the sum of the nuclear charges and the number of electrons, i.e., it is 
simply the molecular charge. 
 
 For the dipole moment, there are three possible components:  x, y, or z depending 
on which of k, l, or m is one (with the others set equal to zero). These are written µx, µy, 
and µz. Experimentally, however, one rarely measures the separate components of the 
dipole moment, but rather the total magnitude, µ, which can be determined as  
 

 µ = µx
2
+ µy

2

+ µz
2  (31-11)  

 
 The dipole moment measures the degree to which positive and negative charges 
are differentially distributed relative to one another, i.e., the overall molecular polarity. 
Thus, for instance, if the electronic wave function has a large amplitude at some positive 
x value while the nuclear charge is concentrated at some negative x value, inspection of 
eq. 31-8 indicates that the dipole moment in the x direction will be negative. If they are 
both concentrated at the same position and the total electronic charge is equal to the total 
nuclear charge, the first and second terms on the r.h.s. of eq. 31-8 cancel, and the dipole 
moment is zero. The figure below illustrates these concepts for the case of the water 
molecule. 
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The nuclear charges of the water molecule, here lying flat in the xy plane, are entirely at 
the nuclear positions. The electrons of the hydrogen atoms, however, are pulled to the 
positive x direction relative to the H nuclei by bonding interactions with the more 
electronegative O atom (the polarization is exaggerated here by depicting the σ orbitals 
with surfaces that fail to encompass the nuclear positions). In addition, the oxygen atom 
contributes two electrons into its in-plane lone pair, the orbital for which is localized at 
large, positive values of x, while only contributing a single electron each to the σ orbitals, 
resulting in another net polarization of negative charge in the positive x direction. The 
sum of these and other effects is such that water has a dipole moment of 1.8 D in the 
direction indicated (parallel with the x axis by symmetry). Note that the out-of-plane p 
orbital may be thought of as “canceling” two protons in the oxygen nucleus when the 
dipole moment is computed, since it is circularly symmetric about the nucleus when 
projected into the xy plane (since it is also symmetric above and below the xy plane, as 
are all other orbitals, there is no z component to the dipole moment). Note that any 
movement of the origin will change the coordinates of all charges by the same amount; 
since the total amount of positive charge is equal to the total amount of negative charge in 
water, the dipole moment is unaffected by such an origin change, but this would not be 
true for a charged species. 
 
 Our computed dipole moment for water at the HF/STO-3G level (from evaluation 
of eq. 31-9, which we will leave to the digital computer) was 1.74 D, in outstanding 
agreement with the experimental moment of 1.8 D! 
 
 Electrical moments are useful because at long distances from a molecule the total 
electronic distribution can be increasingly well represented as a truncated multipole 
expansion, and thus molecular interactions can be approximated as multipole-multipole 
interactions (charge-charge, charge-dipole, dipole-dipole, etc.), which are 
computationally particularly simple to evaluate. At short distances, however, the 
multipole expansion may be very slowly convergent, and the multipole approximation 
has less utility. 
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Other Computed Properties—Molecular Electrostatic Potential 
 
 A (truncated) multipole expansion is a computationally convenient single-center 
formalism that allows one to quantitatively compute the degree to which a positive or 
negative test charge is attracted to or repelled by the molecule that is being represented 
by the multipole expansion. This quantity, the molecular electrostatic potential (MEP), 
can be computed exactly for any position r as 
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Note that this assumes no polarization of the molecule in response to the test charge. The 
MEP is an observable, although in practice it is rather difficult to design appropriate 
experiments to measure it.  
 
 The MEP is particularly useful when visualized on surfaces or in regions of space, 
since it provides information about local polarity. Typically, after having chosen some 
sort of region to be visualized, a color-coding convention is chosen to depict the MEP. 
For instance, the most negative potential is assigned to be red, the most positive potential 
is assigned to be blue, and the color spectrum is mapped to all other values by linear 
interpolation. If this is done on the molecular van der Waals surface, one can immediately 
discern regions of local negative and positive potential, which may be informative for 
purposes of predicting chemical reactivity. The below figure provides a particular 
example. 
 

NO2

NH2

Br

NO2

 
 
Above is the MEP of the radical anion produced by one-electron reduction of the 
dinitroaromatic shown at left (an environmental contaminant from the dying of cloth). 
The spectrum is mapped so that red corresponds to maximum negative charge density 
and deep blue to minimum. This depiction indicates that the buildup of negative charge 
density is larger on the nitro group ortho to the amino group than on that para to NH2. 
Such polarization is consistent with the observed reactivity of the molecule under 
reducing conditions, where protonation of the more negative nitro group in water leads to 
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its ultimate reduction to an amino group but the para nitro group is not reduced. Quantum 
mechanics explains this selectivity. 
 
 
Other Computed Properties—Frontier Molecular Orbital Reactivity 
 
 A slight wrinkle on our above discussion vis a vis reactivity being explicable 
based on opposite-charge attraction is to consider how charge is most likely to flow from 
one molecule to another. If we think about this question for a moment, it should be clear 
that an electron is most easily removed from the highest occupied molecular orbital 
(HOMO) of a nucleophile and added to the LUMO of an electrophile. Thus, in addition 
to recognizing that positively and negatively charged regions will tend to attract one 
another, we should recognize that that attraction will likely follow a spatial path mapped 
out by the HOMO and LUMO of the reacting partners. 
 
 Perhaps the most classic example of this analysis is the backside attack involved 
in nucleophilic substitution of alkyl halides via the SN2 mechanism. For example 
 

F
– +

H

Cl

H
H

H

F

H
H

+ Cl
–

 
 
From our analyses up to this point, and from our knowledge that halogen atoms are more 
electronegative than carbon, we would expect the carbon atom to bear a partial positive 
charge and the halogen atom a partial negative charge. This alone partly rationalizes why 
an incoming nucleophile like fluoride might prefer to attack the carbon atom from the 
back side. 
 
 However, if we consider that the alkyl halide is accepting a transfer of an electron 
across its framework to the chloride ion, we would expect that electron to move into the 
LUMO of the alkyl halide. That LUMO is depicted on the next page from a Hartree-Fock 
calculation with a somewhat better basis set than STO-3G. Note that the LUMO has 
extensive amplitude behind the methyl group (in the backside attack region) so this 
trajectory is dictated in part by frontier orbital considerations. (Note also that the orbital 
is formally a σ* orbital between C and Cl, which is why the C–Cl bond breaks when it 
becomes populated.) 
 
 Such analysis is often helpful in understanding the reactivity of π systems, too. 
Thus, substituted aromatic rings have π-type HOMOs and LUMOs that have larger 
amplitudes at some atoms than others, and their regioselective reactivity is dictated by 
these amplitudes and the nature of the other reagent—either electrophile or nucleophile. 
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Figure.  The lowest unoccupied molecular orbital (LUMO) of chloromethane. 
 
Homework 
 
To be solved in class:   
 
In eq. 31-9, the nuclei contribute to multipole moments in a classical way:  they are point 
charges multiplied by their cartesian coordinates. The total multipole moment then 
considers the electrons' "positions" which, because electrons are quantum mechanically 
"smeared out", requires integration. What if we were simply to replace the full nuclear 
charges in eq. 31-9 with the partial atomic charges from Mulliken analysis and ignore the 
electronic term—what is the dipole moment in that case? (Hint:  the atomic unit of dipole 
moment is electron charge bohr. So, you already have charges in atomic units, but you'll 
need to convert the cartesian coordinates of the atoms in water given in Lecture 29 to 
bohr. You'll also need to convert your atomic units dipole moment to the more standard 
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units of "debye" (D). You'll find the relevant conversion factors in the notes to Lecture 
15.) 
 
To be turned in for possible grading Apr. 14:   
 
 Instead of thinking about the electrons that belong to a single atom, it is 
sometimes interesting to ask about the electrons belonging to each basis function. It 
should be reasonably clear from inspection of eq. 31-4 that the population of an AO basis 
function r, as opposed to an atom, is  
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where r and s are AO basis functions. Compute the population of each basis function for 
water using the P and S matrices given above. What chemical interpretation(s) can be 
associated with your computed values? 


