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The Potential Energy Surface Revisited 
 
 Chemists are typically used to drawing molecules as atoms connected by bonds. It 
takes some faith in quantum chemistry to give up one’s reliance on those lines between 
the atoms. What we’ve learned in this course so far is that the physics of kinetic energy 
and electrostatic attraction and repulsion determines where the bonds are once the atomic 
positions in space are chosen. To avoid our prejudices, a good first step is to refrain from 
invoking particular structures initially, and instead to consider all possible structures for a 
given chemical formula. That is, we can use quantum chemistry to fully characterize the 
potential energy surface (PES) for any particular choice of chemical formula (as we will 
see below, this requires invocation of the Born-Oppenheimer approximation, which 
we’ve previously discussed in a very qualitative fashion). The PES is a “hypersurface” 
(meaning it may require more than 3 dimensions for its specification) that is defined by 
the potential energy of a collection of atoms over all possible atomic arrangements; the 
PES has 3N – 6 internal coordinate dimensions, where N is the number of atoms ≥ 3. This 
dimensionality derives from the three-dimensional nature of Cartesian space. Thus each 
structure, which is a point on the PES, can be defined by a vector X where 
 
 

  
X ! x1, y1,z1, x2, y2,z2,K, xN , yN , zN( )  (34-1) 

 
and xi, yi, and zi are the Cartesian coordinates of atom i. However, this expression of X 
does not uniquely define the structure because it involves an arbitrary origin. We can 
reduce the dimensionality without affecting the structure by removing the three 
dimensions associated with translation of the structure in the x, y, and z directions (e.g., 
by insisting that the molecular center of mass be at the origin) and removing the three 
dimensions associated with rotation about the x, y, and z axes (e.g., by requiring that the 
principal moments of inertia align along those axes in increasing order, for instance). 
 
 A different way to appreciate this reduced dimensionality is to imagine 
constructing a structure vector atom by atom, in which case it is most convenient to 
imagine the dimensions of the PES being internal coordinates (i.e., bond lengths, valence 
angles, etc.) Thus, choice of the first atom involves no degrees of geometric freedom—
the atom defines the origin. The position of the second atom is specified by its distance 
from the first. So, a 2-atom system has a single degree of freedom, the bond length; this 
corresponds to 3N − 5 degrees of freedom (as should be the case for a linear molecule). 
The third atom must be specified either by its distances to each of the preceding atoms, or 
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by a distance to one and an angle between the two bonds thus far defined to a common 
atom. The three atom system, if collinearity is not enforced, has 3 total degrees of 
freedom, as it should (3N–6). Each additional atom requires three coordinates to describe 
its position. There are several ways to envision describing those coordinates. As in the 
below figure, they can either be a bond length, a valence angle, and a dihedral angle, or 
they can be a bond length and two valence angles. Or, one can imagine that the first three 
atoms have been used to create a fixed Cartesian reference frame, with atom 1 defining 
the origin, atom 2 defining the direction of the positive x axis, and atom 3 defining the 
first quadrant of the xy plane. The choice is simply a matter of convenience. Note, 
however, that the shapes of particular surfaces necessarily depend on the choice of their 
coordinate systems, although they will map to one another in a one-to-one fashion. 
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Figure.  Different means for specifying molecular geometries. In frame I, there are no 
degrees of freedom as only the nature of atom “a” has been specified. In frame II, there is 
a single degree of freedom, namely the bond length. In frame III, atom “c” requires two 
additional degrees of freedom to locate, either two bond lengths or a bond length and a 
valence angle. Frame IV illustrates various ways to specify the location of atom “d”; note 
that in every case, three new degrees of freedom must be specified, either in internal or 
cartesian coordinates. 
 
 Particularly interesting points on PESs include local minima, which correspond to 
optimal molecular structures, and saddle points (i.e., points characterized by having no 
slope in any direction, downward curvature for a single coordinate, and upward curvature 
for all of the other coordinates). Simple calculus dictates that saddle points are lowest 
energy barriers to paths connecting minima, and thus they can be related to the chemical 
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concept of a transition state. So, a complete PES provides, for a given collection of 
atoms, complete information about all possible chemical structures and all isomerization 
pathways interconnecting them. 
 
 Unfortunately, complete PESs for polyatomic molecules are very hard to 
visualize, since they involve a large number of dimensions. Typically, we take slices 
through potential energy surfaces that involve only a single coordinate (e.g., a bond 
length) or perhaps two coordinates, and show the relevant reduced-dimensionality energy 
curves or surfaces. Note that some care must be taken to describe the nature of the slice 
with respect to the other coordinates. For instance, was the slice a hyperplane, implying 
that all of the non-visualized coordinates have fixed values, or was it a more general 
hypersurface? A typical example of the latter choice is one where the non-visualized 
coordinates take on values that minimize the potential energy given the value of the 
visualized coordinate(s). Thus, in the case of a single visualized dimension, the curve 
attempts to illustrate the minimum energy path associated with varying the visualized 
coordinate [We must say “attempts” here, because an actual continuous path connecting 
any two structures on a PES may involve any number of structures all of which have the 
same value for a single internal coordinate. When that path is projected onto the 
dimension defined by that single coordinate (or any reduced number of dimensions 
including it) the resulting curve is a non-single-valued function of the dimension.] See 
Figures on next two pages. 
 
 With the complete PES in hand (or, more typically, with the region of the PES 
that would be expected to be chemically accessible under the conditions of the 
experimental system being modeled), one can take advantage of standard precepts of 
statistical mechanics to estimate equilibrium populations for situations involving multiple 
stable molecular structures and compute ensemble averages for physical observables. 
We’ll look at the stat. mech. issues associated with molecular ensembles a bit later. For 
now, simply recall the Boltzmann energy law which states that the fraction of molecules 
having a particular energy Ei may be computed as 
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 (34-2) 

 
where the sum runs over all different possible energy levels, kB is Boltzmann’s constant, 
and T is temperature. Thus, we may compute the ratio of two structures having different 
energies (that ratio has the form of an equilibrium constant) as 
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That is, the ratio of A to B will be dictated by the energy difference between them. 
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So, if we know the energies of different wells on our PES, we can predict the fraction of 
total mass that each structural well will contribute to a given equilibrium population. 
 
 
Transition-state Structures and Chemical Kinetics 
 

We’ve already defined what a transition-state (TS) structure is. TS structures are 
chemically important insofar as they represent transition points between different stable 
wells on a PES. One of the greatest powers of quantum chemistry is its ability to well 
define a TS structure—experimentally it is almost impossible to “see” one since their 
lifetimes are on the order of one molecular vibrational period, this being in the sub-
picosecond regime. 
 
 Since TS structures are the bottlenecks in chemical reactions, it probably will 
come as no surprise that speeds of chemical reactions depend on the relative energies of 
TS structures compared to minima. Indeed, this would seem to follow immediately from 
thinking about the equilibrium constant defined above. If a TS is very high in energy, 
only a tiny fraction of molecules will be that TS structure, and hence it will be hard to get 
from one minimum to the other connected by that TS structure. 
 
 We will not derive the result, but from transition-state theory (TST), one finds 
that a unimolecular chemical reaction (i.e., one involving only a single molecule, as a 
rearrangement, for example), generically A → B, proceeds according to 
 

 

! 

"
d A[ ]
dt

=
d B[ ]
dt

= k A[ ] (34-4) 

 
where t is time. Eq. 34-4 states that the rate of disappearance of A is equal to the rate of 
appearance of B (simply from mass balance) and depends on how much A there is 
(obviously) and the “rate constant” k. The rate constant, from TST, is 
 

 

! 

k =
kBT

h
e
" GTS"GA( ) /RT  (34-5) 

 
where h is Planck’s constant and R is the universal gas constant. The difference between 
the free energy (G) of the TS structure and the reactant is called the free energy of 
activation. We have not yet learned how to convert from potential energy for a molecule 
to free energy for a collection of molecules, but if we temporarily assume that there is no 
difference, we can immediately see the analogy between eqs. 34-3 and 34-5, where using 
a molar ensemble causes kB to be replaced by R (which is kB times Avogadro’s number) 
in the denominator of the exponential in eq. 34-5. 
 
 So, if we can use quantum mechanics to compute an accurate PES, we can predict 
all of the forms of all stable molecules at any temperature, and how quickly reactions to 
convert one to another will take place! 
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The One-dimensional Schrödinger Equation for Molecular Vibration 
 

Within the context of the Born-Oppenheimer approximation, the potential energy 
surface may be regarded as a “property” of an empirical formula. With a defined PES, it 
is possible to formulate and solve Schrödinger equations for nuclear motion (as opposed 
to electronic motion) 
 

 !
1

2mii
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" #i
2

+ V q( )
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' 

( ) 
* q( ) = E* q( )  (34-6)  

 
where N is the number of atoms, m is the atomic mass, V is the potential energy from the 
PES as a functions of the 3N nuclear coordinates q, and Ξ is the nuclear wave function 
that is expressed in those coordinates. Solution of eq. 34-6 provides entry into the realms 
of rotational and vibrational spectroscopy, some aspects of which we’ve already visited. 
 

When thinking about chemical thermodynamics and kinetics, it is a convenient 
formalism to picture a molecule as being like a ball rolling on a PES. In this simple 
model, the exact position of the ball determines the molecular geometry and the potential 
energy, and its speed as it rolls in a frictionless way determines its kinetic energy. Of 
course, quantum mechanical particles are different than classical ones in many ways. One 
of the more important differences is that they are subject to the Heisenberg uncertainty 
principle, one consequence of which is that, even at absolute zero, polyatomic molecules 
must vibrate—within the simple ball and surface picture, the ball must always be moving, 
with a sum of potential and kinetic energy that exceeds the energy of the nearest 
minimum by some non-zero amount. This energy is contained in molecular vibrations. 
 

In the simplest possible case, a diatomic, eq. 34-6 when restricted to the 
vibrational motion alone is clearly a function of only a single variable, the interatomic 
distance r. We have now solved several one-dimensional Schrödinger equations. Our 
only challenge here is that we do not know exactly what the potential energy function V 
looks like as a function of r. Given a level of theory, however, we can compute V point 
by point to an arbitrary level of fineness (i.e., simply compute the electronic energy of the 
system for various fixed values of r). Those points may then be fit to any convenient 
analytic function—polynomial, Morse, etc.—and the one-dimensional Schrödinger 
equation solved using standard numerical recipes to yield eigenfunctions and 
eigenvalues. Note that the harmonic oscillator equation would be recovered if we fit V to 
a parabolic form. However, if we are willing to generate more complicated wave 
functions (typically involving power series expansions times gaussians) we can do better 
than the harmonic oscillator. An example is shown graphically on the next page. 
 
 With a complete PES for a polyatomic, this process can be too tedious, and the 
harmonic approximation becomes useful again, as we will see next time. 
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Figure.  Vibrational energy levels determined from solution of the one-dimensional 
Schrödinger equation for some arbitrary variable θ (some higher levels not shown). In 
addition to the energy levels (horizontal lines across the potential curve), the vibrational 
wave functions are shown for levels 0 and 3. Conventionally, the wave functions are 
plotted in units of (probability)1/2 with the same abscissa as the potential curve and an 
individual ordinate having its zero at the same height as the location of the vibrational 
level on the energy ordinate—those coordinate systems are explicitly represented here. 
Note that the absorption frequency typically measured by infrared spectroscopy is 
associated with the 0→1 transition, as indicated on the plot. For the harmonic oscillator 
potential, all energy levels are separated by the same amount, but this is not necessarily 
the case for a more general potential—here the levels become more closely spaced near 
the dissociation limit. 
 
 
The Born-Oppenheimer Approximation Revisited (Optional, Non-testable Material) 
 
 How might we construct a wave function that does depend on nuclear coordinates 
in a more complete way than as fixed positions in the electronic wave function? The 
simplest introduction of complexity might be to take a complete wave function as 
 

 

! 

" Q,q( ) = c1 Q( )#1 q;Q( ) + c2 Q( )#2 q;Q( ) (34-7) 
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where ψ1 and ψ2 are two different electronic wave functions that depend on the 
electronic coordinates q and the nuclear coordinates Q and the coefficients c also depend 
on the nuclear coordinates because the mixing of the states will vary with different 
geometries. Note that since the coefficients c1 and c2 depend only on nuclear coordinates, 
each is formally a nuclear wave function (e.g., a harmonic oscillator wave function). 
 
 In this case, the Schrödinger equation becomes 
 

 H! Q,q( ) = Efull c1 Q( )"1 q;Q( ) + c2 Q( )"2 q;Q( )[ ]  (34-8) 
 
where the Hamiltonian operator now includes nuclear kinetic energy as well as the 
nuclear repulsion and electronic energy, i.e., 
 

 

! 

H = "
1

2mk

#k
2

k

nuclei

$ + Hel +VN  (34-9) 

 
where mk is the mass of nucleus k in atomic units and Hel and VN are the usual electronic 
Hamiltonian and nuclear repulsion. To determine a given c as a function of nuclear 
coordinates Q, we can multiply both sides of eq. 34-8 on the left by the electronic wave 
function corresponding to that c and integrate over the electronic coordinates, giving 
 

 

! 

"1 q;Q( )H c1 Q( )"1 q;Q( ) + c2 Q( )"2 q;Q( ) =

Efull "1 q;Q( ) c1 Q( )"1 q;Q( ) + c2 Q( )"2 q;Q( )
 (34-10) 

 
The r.h.s. is simple to evaluate since the electronic wave functions are orthonormal; thus, 
the expectation value on the r.h.s. is just Efullc1(Q). Expanding the l.h.s. is a bit more 
demanding. Since both the nuclear and electronic wave functions depend on Q, the 
coordinates of the nuclei, the application of the del-squared operator must be carried out 
using the chain rule of differentiation. Some quick calculus shows that 
 
 

! 

"k
2
fg( ) = "k

2
f( )g + 2 "

k
f( ) • "

k
g( ) + f "k

2
g( )  (34-11) 

 
where the vector operator del is defined as 
 

 !k =
"

"xk
,
"

"yk
,
"

"zk

# 

$ 
% & 

' 
(  (34-12) 

 
 
 So, the l.h.s. of eq. 34-10 is 
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where E1 is the usual electronic energy including nuclear repulsion (note that terms 
involving <ψ1|ψ2> or <ψ1|Hel|ψ2> were set to zero based on the orthonormality of the 
electronic eigenfunctions). An imposing equation, admittedly. But, let’s just consider the 
situation. We have a whole bunch of nasty terms preceded by –1 over twice the nuclear 
mass, and the electronic energy of state 1 and the nuclear repulsion energy. If we assume 
that the nuclear masses are so large that the del and del squared terms involving 
electronic wave functions are negligible compared to the del squared terms already 
present in the electronic part of the Hamiltonian, we lose all of the terms in curly braces 
except for the first. Noting from our discussion of eq. 34-10 that eq. 34-13 must equal 
Efullc1(Q) we would then have a “normal” Schrödinger equation of the nuclear wave 
function 
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i.e., the nuclei for state 1 move subject only to the potential from state 1 (which is E1), 
and the problem is separable. That is the real Born-Oppenheimer approximation, if you 
like. It says, however, that there can be no transition from state 1 to state 2 that does not 
involve a photon (normalization of eq. 34-14 means that |c2(Q)|2 must be zero in eq. 34-
7). Experiment indicates, however, that such radationless transitions do occur, so 
sometimes one must work with the full eq. 34-13 and abandon the Born-Oppenheimer 
approximation. 
 
 Models that do not invoke the Born-Oppenheimer approximation are called “non-
adiabatic”. A model that considers only a single potential energy surface from which 
transitions can occur only via absorption or emission of radiation is called “adiabatic”. 
 
 
Homework 
 
To be solved in class:   
 

What error in a computed energy difference is enough to make a predicted 
equilibrium constant be off by a factor of 10 at 25 °C? What about 500 °C? What error in 
a computed energy difference is enough to make a predicted rate constant be off by a 
factor of 10 at 25 °C? What about 500 °C? Take the value you determined for the case of 
an equilibrium constant at 25 °C:  what fraction of the total energy of our HF/STO-3G 
optimized water molecule is your answer? 
 
To be turned in for possible grading Apr. 28:   
 
 What is the rate constant at 298 K for a unimolecular reaction that has a free-
energy of activation of 21 kcal mol–1? Now, rearrange eq. 34-4 so that all terms 
involving the variables t and [A] are on opposite sides of the equation. Integrate both 
sides from the starting point t = 0, [A] = [A]0 to t = t´, [A] = [A]t´ to obtain an expression 
for the concentration [A]t´ relative to the starting concentration [A]0 at any time t´. Using 
this equation, what is the half-life (the time required for [A]t´ to equal ½[A]0) for a 
unimolecular reaction as a function of the rate constant k? What is the half-life for the 
specific case of the unimolecular reaction having a free energy of activation of 21 kcal 
mol–1 (which is about right for rotation about the C–N bond in an amide, for instance)? 
 
 


