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Lecture 36, April 28, 2006 
 
(Some material in this lecture has been adapted from Cramer, C. J. Essentials of 
Computational Chemistry, Wiley, Chichester:  2002; pp. 319-331.) 
 
 
Solved Homework 
 

Since molecular hydrogen only has two electrons, there is only one Coulomb 
integral deriving from evaluation of the generic expression for interelectronic repulsion 
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where recall that the integration over spin coordinates ω1 and ω2 will give 2 for the 
singlet spin function. 
 

 For closed-shell hydrogen we can call the above integral Jσσ. For the closed-shell 
wave function of H2 in eq. 35-8, Jσσ is 
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where we’ve used the shorthand notation for Coulomb integrals and stopped writing 1s 
everywhere. Now, note that since both a and b are 1s orbitals, and since order of indices 
doesn’t matter, there are really only 4 kinds of integrals:  all 4 indices identical, 3 of one 
index and one of the other, 2 of each index in each case paired on the same side, and 2 of 
each index with both indices appearing once on each side. That is we can simplify to 
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 Now we’ll do the same for the open-shell wave function of eq. 35-9. In that case 
we have 
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Notice that this is the expected result for the case of two electrons in two orbitals, 
namely, Jab + Kab. 
 
 Now, when the two atoms are very far apart, the only integral that won’t be zero 
will be (aa|aa). So, only the closed-shell wave function still has a Coulomb repulsion at 
long distance (this makes intuitive sense—in the open-shell wave function there is one 
electron on each atom, so if they are far apart, how can there be Coulomb repulsion?) 
This is another illustration of why RHF dissociates incorrectly, because of the 
contribution of the ionic term that places both electrons on one atom. 
 
 At short distance (i.e., bonding distance), both wave functions have one Coulomb 
contribution (ab|ab), so there’s no distinction between them there. The open-shell case 
has a full (aa|bb) and the closed-shell case only 1/2 (aa|bb). However, the closed-shell 
case also has 1/2 (aa|aa) and it is obvious that this must be bigger than 1/2 (aa|bb) for 
every interatomic distance (until the two nuclei fuse into one!) So, even neglecting the 
extra repulsion from the 2(aa|ab) in the closed-shell wave function, it clearly has more 
Coulomb repulsion at bonding distance than the open-shell wave function. 
 
 So, why does H2 form a bonded closed-shell ground state? The answer must be 
that the attraction to the nuclei is much larger when both electrons are in the σ orbital 
than is the case when each is forced to separately occupy a single 1s orbital. Just looking 
at the shapes of the orbitals this seems reasonable. The σ orbital has most of its amplitude 
“sandwiched” between the two nuclei, so it’s close to both at the same time. The 
individual 1s orbitals are each separately a bit too far from the other H nucleus to enjoy 
as much nuclear attraction. 
 
 
Thermochemistry 
 
 In the very recent past, it has become possible under certain circumstances to 
observe single molecules in the laboratory. Nevertheless, the vast majority of chemical 
research concerns itself not with individual molecules, but instead with macroscopic 
quantities of matter that are made up of unimaginably large numbers of molecules. The 
behavior of such ensembles of molecules is governed by the empirically determined laws 
of thermodynamics, and most chemical reactions and many chemical properties are 
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defined in terms of some of the fundamental variables of thermodynamics, like enthalpy, 
entropy, free energy, and others. 
 
 Until now, we have for the most part concerned ourselves only with the potential 
and kinetic energies of individual electrons and nuclei in single molecules, and one of our 
rare connections to thermodynamics has been in some sense a misleading one, namely 
that we have often converted atomic units into other units more typically associated with 
macroscopic quantities, e.g., kcal mol−1 or kJ mol−1. This sometimes leads newcomers to 
the field to think of the atomic unit of energy, the hartree, as being enormously large, 
since 1 Eh is equal to 627.51 kcal mol−1. In reality, however, the hartree is a 
tremendously tiny unit, since “kcal mol−1”, as its name makes clear, refers to the energy 
associated with one mole (i.e., 6.0221 x 1023) of molecules, not with the single molecule 
that is the typical subject of an electronic structure calculation. Moreover, when we make 
comparisons between two different calculations, say to determine the relative energies of 
two isomers, and we carry out such simple unit conversions, we tacitly (and often 
incorrectly) assume that the potential energy difference determined from the calculation 
is all that matters when comparing to a measured energy difference that is almost always 
in the form of some thermodynamic quantity, most typically enthalpy or free energy. 
Within the context of certain assumptions, however, a connection can be established in a 
rigorous way between single-molecule calculations and ensemble thermodynamic 
quantities. 
 
 The first step in moving from the microscopic regime to the macroscopic is to 
recognize that the Born-Oppenheimer potential energy surface is fundamentally a 
classical construct (although the energies of various points whose coordinates are defined 
by the fixed nuclear positions are determined from quantum mechanical calculations of 
the electronic energy). As we’ve discussed several times, when the motion of the nuclei 
on this surface is also accounted for in a quantum mechanical way, energy is “tied up” in 
the molecular vibrations. This is true even at a temperature arbitrarily close to absolute 
zero, since, although every vibrating molecule will be in its lowest energy vibrational 
state at so low a temperature, the lowest vibrational energy level for any bound vibration 
is not zero. 
 
 Instead, within the harmonic oscillator approximation, the energy of the lowest 
vibrational level for any individual vibration can be determined from eq. 35-1 as hω/2 
where h is Planck’s constant (6.6261 x 10−34 J s) and ω is the vibrational frequency given 
by eq. 35-2. The sum of all of these energies over all molecular vibrations defines the 
zero-point vibrational energy (ZPVE). We may then define the “internal energy” U at 0 K 
for a molecule as 
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where Eelec is the energy for the stationary point on the Born-Oppenheimer PES. 
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 Statistical mechanics is, obviously, a course unto itself in the standard 
chemistry/physics curriculum (Chem 3501 here at Minnesota), and no attempt will be 
made here to introduce concepts in a formal and rigorous fashion. Instead, the 
fundamental equations describing the relationships between key thermodynamic variables 
are presented here without derivation. From a quantum chemistry standpoint, many 
simplifying assumptions make most of the details fairly easy to follow, so we will 
proceed with confidence. 
 
 In order to deal with collections of molecules in statistical mechanics, one 
typically requires that certain macroscopic conditions be held constant by external 
influence. The enumeration of these conditions defines an “ensemble”. We will confine 
ourselves in this chapter to the so-called “canonical ensemble”, where the constants are 
the total number of particles N (molecules, and, for our purposes, identical molecules), 
the volume V, and the temperature T. This ensemble is also sometimes referred to as the 
(N, V, T) ensemble. 
 
 Just as there is a fundamental function that characterizes the microscopic system 
in quantum mechanics, i.e., the wave function, so too in statistical mechanics there is a 
fundamental function having equivalent status, and this is called the “partition function”. 
For the canonical ensemble, it is written as 
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where i runs over all possible energy states of the system having energy Ei and kB is 
Boltzmann’s constant (1.3806 x 10−23 J K−1). 
 
 Within the canonical ensemble, and using established thermodynamic definitions, 
all of the following are true 
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where the notation associated with the partial derivatives in eqs. 36-4 and 36-6 implies N 
and V held constant during differentiation with respect to T, H is enthalpy, P is pressure, 
S is entropy, and G is (Gibbs) free energy. 
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 Of course, the elegance of eqs. 36-4 to 36-7 is somewhat muted by the daunting 
prospect of finding an explicit representation of Q that permits the necessary partial 
differentiations of eqs. 36-4 and 36-6 to be carried out. For a true ensemble, Q must be 
some fantastically complex many-body function involving a staggeringly enormous 
number of energy levels. So, in order to make progress, we indulge in a number of 
simplifying assumptions. 
 
 We begin by assuming that our ensemble is an ideal gas. The first consequence of 
this assumption, since ideal gas molecules by definition do not interact with one another, 
is that we may rewrite the partition function as 
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where the factor of 1/N! derives from the quantum mechanical indistinguishability of the 
particles,  ε is the total energy of an individual molecule, and the change on going from 
the first to second line derives from expressing the exponential of all possible sums of 
energies as a sum of all possible products of exponentials of individual energies. On 
going from the second to third line, the sum has been changed so that it goes over discrete 
energy levels, rather than individual states, and gk is the degeneracy of level k. The 
quantity in brackets on the third line defines the molecular partition function q, which 
appears on the fourth line. 
 
 A second consequence of the ideal gas assumption is that PV in eq. 36-5 may be 
replaced by NkBT. In the special case where we are working with one mole of molecules, 
in which case N = NA (Avogadro’s number), we may replace PV with RT, where R is the 
universal gas constant (8.3145 J mol−1 K−1). 
 
 Overall, then, we have reduced the problem from finding the ensemble partition 
function Q to finding the molecular partition function q. In order to make further 
progress, we assume that the molecular energy ε can be expressed as a separable sum of 
electronic, translational, rotational, and vibrational terms, i.e., 
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where again advantage is taken of the ability to express an exponential of sums as a sum 
of products of exponentials, and the separate lines make clear that the degeneracy of a 
total molecular energy level is simply the product of the degeneracies of each of its 
contributing components. 
 
 Note in equations 36-4 and 36-6, Q always appears as the argument of the natural 
logarithm function. Using eqs. 36-8 and 36-9, our assumptions to this point allow us to 
write 
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where going from the second to third line makes use of Stirling’s approximation for 
ln(N!) when N is large. This separation of terms by the logarithm function makes evident 
that we may speak of individual components—electronic, translational, rotational, and 
vibrational—of thermodynamic functions within our approximate treatment. All that 
remains is to express the various components of the molecular partition function in some 
useful, preferably analytic, form. 
 
 Electronic Partition Function. For a typical, closed-shell singlet molecule, the 
degeneracy of the ground state is unity, and the various excited states are so high in 
energy that, at least at temperatures below thousands of degrees, they make no significant 
contribution to the partition function. Because U0 already includes Eelec (eq. 36-1), we 
can view the energy of the ground state as being the zero of energy in the exponential of 
the electronic partition function. In that case, the electronic partition function is simply 
qelec = 1 (we’re assuming the higher energy contributions to be negligible, so only e0 
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survives). Inspection of eq. 36-6 then reveals that the electronic component of the entropy 
will be zero (ln of 1 is zero, and the constant 1 obviously has no temperature dependence, 
so both terms in S involving qelec are also zero). So, that one was easy. 
 
 Molecular Translation Partition Function.  To evaluate qtrans, we assume that the 
molecule acts as a particle in a 3-dimensional cubic box of dimension a3 where a is the 
length of one side of the cube. The energy levels for this elementary quantum mechanical 
system are given by 
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where M is the molecular mass, and each energy level has associated with it the three 
unique quantum numbers nx, ny, and nz. Because the energy levels for the particle in a 
box are very, very closely spaced (at least for a box of macroscopic dimensions), the sum 
appearing in the partition function may be replaced by an indefinite integral, and this 
integral can be evaluated analytically as 
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where the volume of the box is now written V as opposed to a3. Note that it is only the 
translational partition function that depends on volume, and it does so because particle-
in-a-box wave functions cannot be normalized without choice of a specific, finite, non-
zero volume (it can be shown that it is only the volume that matters, and not the shape of 
the box). It is this term, then, that dictates the necessity of choosing a “standard state” 
volume to ensure comparison of thermodynamic values in a consistent fashion. Because 
we have chosen to model our substance as an ideal gas, we may replace V by RT/P and 
specify a standard-state pressure instead. This is typically the language that is used in 
electronic structure calculations, and the usual choice for standard state is 1 atm pressure 
(corresponding to a standard-state molar volume of 24.45 L at 298 K). Typically, rather 
than list standard-state conditions in words again and again, the standard state is indicated 
by an accepted abbreviation, such as the superscript “o” appearing in eq. 36-14 below. 
 
 Evaluating equations 36-4 and 36-6 for a molar quantity of particles using eq. 36-
12 for the translational partition function gives 
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where the last two terms in the final line of eq. 36-10, i.e., those deriving from Stirling’s 
approximation, are typically assigned to the translational partition function as well. As 
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they have no temperature dependence, this has no impact on Utrans, however, NA appears 
in the entropy of translation because of them. Note that to compute Utrans and Strans does 
not require any quantum chemistry. All one needs to know is the molecular mass; 
everything else is just constants and choice of standard state. Quantum chemistry only 
entered in providing the solution of the particle-in-a-box energy levels. 
 
 Molecular Rotational Partition Function.  We previously derived in detail the 
approach that is taken to solving the rigid-rotor nuclear Schrödinger equation in order to 
compute rotational wave functions and energy levels, and discussed the particular cases 
of diatomic molecules and polyatomic prolate tops (see Lecture 13). The completely 
general rigid-rotor Schrödinger equation for a molecule characterized by 3 unique axes 
and associated moments of inertia does not lend itself to easy solution. However, by 
pursuing a generalization of the classical mechanical rigid rotor problem, one can derive 
a quantum mechanical approximation that is typically quite good. Within that 
approximation, the rotational partition function becomes 
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where IA, IB, and IC are the principal moments of inertia, and σ is a symmetry number. In 
this case, σ is the number of pure rotations that carry the molecule into itself (e.g., 2 for 
water). 
 
 Evaluation of the rotational components of the internal energy and entropy using 
this partition function for non-linear molecules gives 
 

 

! 

U
rot

=
3

2
RT  (36-16) 

 

! 

Srot = R ln
"IAIBIC
#

8"2kBT

h
2

$ 

% 
& & 

' 

( 
) ) 

3/2* 

+ 

, 
, 

- 

. 

/ 
/ 

+
3

2

0 

1 
2 

3 
2 

4 

5 
2 

6 
2 

 (36-17) 

 
 Again, it should be noted that evaluating the rotational components of U and S 
requires relatively little in the way of molecular information. Only the principal moments 
of inertia are required, which derive entirely from the molecular structure. Note that the 
units for quantities appearing in the partition function must be chosen consistently so as 
to render q dimensionless. 
 
 Molecular Vibrational Partition Function.  In a polyatomic molecule with many 
vibrations, we simplify the vibrational partition function much as the original molecular 
partition function was simplified:  we assume that the total vibrational energy can be 
expressed as a sum of individual energies associated with each mode, in which case, for a 
non-linear molecule, we have 
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where the energies εk are the vibrational energy levels associated with each mode k, and 
there are 3N−6 such modes in a non-linear molecule (3N−5 in a linear molecule) where N 
is the number of atoms. 
 
 To evaluate the sums associated with each mode, we assume that the modes can 
be approximated as quantum mechanical harmonic oscillators, in which case the energy 
levels are known from analytic solution of that Schrödinger equation, and the partition 
function for any individual mode is 
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(note that k, and not k + (1/2), appears in the energies because the zero-point vibrational 
energy (1/2)hω has already been included in the zero of energy by eq. 36-1). 

 
 The sum in eq. 36-19 is well known as a convergent geometric series, so that we 
may write 
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This is a serendipitous result, insofar as the energy level spacing for most molecular 
vibrations is sufficiently large that significant errors would be introduced by replacing the 
sum with the corresponding indefinite integral as we did successfully for translation and 
rotation (such a replacement actually would amount to assuming a classical harmonic 
oscillator, for which qvib = kBT / hω; by expanding the exponential in eq. 36-20 as its 
corresponding power series, one can see that the classical and quantum partition 
functions agree only when kBT >> hω). 
 
 Using eq. 36-20 for each mode, the full vibrational partition function of eq. 36-18 
can be expressed as 
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where Π implies a product series (the multiplicative analogy of a sum), and the upper 
limit would be 3N−5 for a linear molecule. Evaluation of the vibrational components of 
the internal energy and entropy using the partition function of eq 36-21 provides 
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 Note that eqs. 36-22 and 36-23 take the vibrational frequencies as independent 
variables, and as such cannot be calculated ab initio without first optimizing a structure at 
some level of quantum theory and then computing the second derivatives in order to 
obtain the frequencies within the harmonic oscillator approximation as we discussed last 
lecture. 
 
 In practice, then, it is fairly straightforward to convert the potential energy 
determined from an electronic structure calculation into a wealth of thermodynamic 
data—all that is required is an optimized structure with its associated vibrational 
frequencies. The agreement between theory and experiment can be extraordinarily good. 
For example, more than 20 years ago Hout et al. computed absolute entropies So at 300 K 
for a large number of small molecules at the HF/3-21G level and obtained agreement 
with experiment within 0.1 cal mol–1 K–1 for many cases (Hout, R. F., Jr.; Levi, B. A.; 
Hehre, W. J. J. Comput. Chem. 1982, 3, 234). For our old friend water, the predicted 
entropy is 45.11 e.u. at the HF/3–21G level, and 45.10 e.u. experimentally. 
 
 Absolute heat capacities at constant volume can also be computed using the 
thermodynamic definition 
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and the various equations for components of U above. 
 
 So, to summarize, within the context of the ideal gas assumption, we can compute 
any thermochemical quantity of interest for a given molecule simply by computing, for its 
optimized geometry, its electronic energy (including nuclear repulsion) and its 
vibrational frequencies from the harmonic oscillator approximation. Thus, we can 
compare theoretical quantities directly to measured experimental quantities, which are 
nearly always in the form of ΔHo or ΔGo. 
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Homework 
 
To be solved in class:   
 

To what value does the free energy associated with a vibrational mode tend as the 
frequency of the vibration tends to zero? (Hint:  Use a power series expansion for the 
exponential function.) Does this result seem physically meaningful? 
 
To be turned in for possible grading May 5: 
 
 Write a haiku about quantum mechanics. Recall that haiku refers to a Japanese 
form of poetry that involves three lines having five, seven, and five syllables, respectively 
(see http://www.toyomasu.com/haiku/ for more history and examples). Poetry forms 
other than haiku will not earn any points, although you are welcome to turn them in as 
supplemental art if you are feeling inspired. A proper haiku will earn a full grade of 5 
points (we will not attempt to grade on the subjective measure of quality…)  
 


