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Solved Homework 
 

Consider first, for an individual vibration 
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If we replace the exponential by its power series expansion, truncating after the first 
power in ω (since ω is going to zero, and thus only the first power term has significant 
size compared to the others) we have 
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So, there appears to be no problem with this term blowing up as ω goes to zero. 
 
 Now consider 
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 The first term in brackets is just the one we did above times 1/T, so we know that 
it converges to 1 as ω goes to zero. What about the second term? Using the power series 
expansion, we have 
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The second term on the r.h.s. is just a constant, but the first term goes to negative infinity 
as ω goes to zero. This is actually correct. The entropy of a harmonic oscillator becomes 
infinite as the vibrational frequency goes to zero (implying that there is really no well 
anymore; thus, you just have a free particle, and since a free particle has a continuum of 
states open to it, it has infinite entropy given an infinite volume). However, as the 
frequency goes to zero (meaning a very “soft” mode in the molecule), the harmonic 
oscillator is a lousy approximation for the potential energy surface. Typically such modes 
are torsions (rotations about single bonds), and as such they don’t look like parabolic 
wells on the PES, they are instead threefold periodic potentials that repeat after one full 
rotation. The partition function for an internal rotor is different from that for a harmonic 
oscillator, and does not diverge at zero frequency (a so-called “free rotor”). 
 
 
Electron Correlation 
 
 Multiconfiguration Self-Consistent Field Theory.  Hartree-Fock theory makes the 
fundamental approximation that each electron moves in the static electric field created by 
all of the other electrons, and then proceeds to optimize orbitals for all of the electrons in 
a self-consistent fashion subject to a variational constraint. The resulting wave function, 
when operated upon by the Hamiltonian, delivers as its expectation value the lowest 
possible energy for a single-determinantal wave function formed from the chosen basis 
set. 
 
 So, the question arises of how we might modify the HF wave function to obtain a 
lower electronic energy when we operate on that modified wave function with the 
Hamiltonian. By the variational principle, such a construction would be a more accurate 
wave function. We cannot do better than the HF wave function with a single determinant, 
so one obvious choice is to construct a wave function as a linear combination of multiple 
determinants, i.e., 
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where the coefficients c reflect the weight of each determinant in the expansion and also 
ensure normalization. For the moment, we will ignore the nature of the determinants, 
other than the first one, which is the HF determinant. A general expansion does not have 
to include the HF determinant, but since the HF wave function seems to be a reasonable 
one for many purposes, it is useful to think of it as a leading term in any more complete 
wave function.  
 
 For the majority of the chemical species we’ve discussed thus far, the chief error 
in the HF approximation derives from ignoring the correlated motion of each electron 
with every other. This kind of electron correlation is called “dynamical correlation” 
because it refers to the dynamical character of the electron-electron interactions. 
Empirically, it is observed that for most systems the HF wave function dominates in the 
linear combination expressed by eq. 37-1 (i.e., c0 is much larger than any other 
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coefficient); even though the correlation energy may be large, it tends to be made up from 
a large sum of small contributions from other determinants. 
 
 However, in some instances, one or more of these other determinants may have 
coefficients of similar magnitude to that for the HF wave function. It is easiest to 
illustrate this by consideration of a specific example. Consider the closed-shell singlet 
wave function for trimethylenemethane (TMM, Figure below). TMM is a so-called non-
Kekulé molecule, meaning that the unsaturation in the molecule can’t be represented with 
an integer number of double bonds between unsaturated atoms (in TMM, you can only 
draw one double bond from the central carbon to one terminal carbon, and after that 
you’re stuck with imagining radicals on the remaining two carbon atoms—of course, 
there are three equivalent resonance structures for this arrangement, so the MOs must be 
delocalized). As this is a carbon π system, we could use Hückel theory to analyze the 
orbitals, and if we do we find that in full D3h symmetry it has two degenerate frontier π 
orbitals into which only 2 π electrons are available to be placed (after filling the lowest 
energy orbital with the other two). Following a molecular analog of Hund’s rule for 
atoms, the molecule has a triplet ground state (i.e., the lowest energy state has one spin-
aligned electron in each degenerate orbital π2 and π3), but here we are concerned with the 
closed-shell singlet. 
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Figure.  The π orbital system of TMM. Orbitals π2 and π3 are degenerate when TMM 
adopts D3h symmetry. 
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 If we carry out a restricted HF calculation, one or the other of the degenerate 
frontier pair must be chosen to be occupied, because the nature of RHF is to doubly 
occupy every orbital. The calculation will then optimize the shapes of all of the occupied 
orbitals, and we will end up with a best possible single-Slater-determinantal wave 
function formed from those MOs. But it should be fairly obvious that an equally good 
wave function might have been formed if the original guess had chosen to populate the 
other of the two degenerate frontier orbitals. Thus, we might expect each of these two 
different RHF determinants to contribute with roughly equal weight to an expansion of 
the kind represented by eq. 37-1. This kind of electron correlation, where different 
determinants have similar weights because of near (or exact) degeneracy in frontier 
orbitals, is called “non-dynamical correlation” to distinguish it from dynamical 
correlation. This emphasizes that the error here is not so much that the HF approximation 
ignores the correlated motion of the electrons, but rather that the HF process is 
constructed in a fashion that is intrinsically single-determinantal, which is insufficiently 
flexible for some systems. 
 

Continuing with our TMM example, let us say that we have carried out an RHF 
calculation where the frontier orbital that was chosen to be occupied was π2. The 
determinant resulting after optimization will be 
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and orbital π3 will be empty (i.e., a virtual orbital). We emphasize this by including it in 
the Slater determinant with an occupation number of zero, although this notation is not 
standard. We might generate the alternative determinant by keeping the same MOs but 
simply switching the occupation numbers, i.e., 
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An alternative, however, would be to require the RHF calculation to populate π3 in the 
initial guess, in which case we would determine 
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where the prime on the wave function and orbitals emphasizes that, since different 
orbitals were occupied during the SCF process, the shapes of all orbitals will be different 
comparing one RHF wave function to the other. 
 
 If we were to compare the energies of the wave functions from eqs. 37-2, 37-3, 
and 37-4, we would find the energies of the first and third to be considerably lower than 
the second. Since the real system has degenerate frontier orbitals, it seems reasonable that 
the energies of wave functions eq. 37-2 and eq. 37-4 are similar, but why is 37-3 higher? 
The problem lies in the nature of the SCF process. Only occupied orbitals contribute to 
the electronic energy—virtual orbitals do not. As such, there is no driving force to 
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optimize the shapes of virtual orbitals; all that is required is that they be orthogonal to the 
occupied MOs. Thus, the quality of the shape of orbital π3 depends on whether it is 
determined as an occupied or a virtual orbital. 
 
 From the nature of the system, however, we would really like π2 and π3 to be 
treated equivalently during the orbital optimization process. That is, we would like to find 
the best orbital shapes for these MOs so as to minimize the energy of the two-
configuration wave function 
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where a1 and a2 account for normalization and relative weighting (and we expect them to 
be equal for D3h TMM). Such a wave function is a so-called “multiconfiguration self-
consistent-field” (MCSCF) one, because the orbitals are optimized for a combination of 
configurations (the particular case where the expansion includes only two configurations 
is sometimes abbreviated TCSCF). 
 
 As a technical point, a “configuration” or “configuration state function” (CSF) 
refers to the molecular spin state and the occupation numbers of the orbitals. For closed-
shell singlets, CSFs can always be represented as single determinants with all orbitals 
doubly occupied. In many open-shell systems, on the other hand, proper CSFs can only 
be represented by a combination of two or more determinants (recall our old friend the 
open-shell singlet, which was a linear combination of two single determinants). MCSCF 
theory is designed to handle both multiple configurations and the possible multi-
determinantal character of individual configurations. 
 
 If we carry out a MCSCF calculation permitting all electrons to be redistributed 
over all possible orbitals formed from the basis set, such a calculation is called “full 
configuration interaction” or “full CI”. Within the choice of basis set, it is the best 
possible calculation that can be done, because it considers the contribution of every 
possible CSF.  
 
 Indeed, a full CI with an infinite basis set is an “exact” solution of the (non-
relativistic, Born-Oppenheimer, time-independent) Schrödinger equation. It is the 
pinnacle of modern quantum theory (we got there!) 
 

Alas, that pinnacle is essentially unreachable for all but the smallest of molecules 
(perhaps up to 4 atoms), since the number of CSFs in a full CI can be staggeringly large. 
The trouble is not the number of electrons, which is a constant, but the number of basis 
functions. Consider methanol (CH3OH), for example. If we were to use a basis set that 
has roughly two functions for each atomic orbital of the atoms involved and also puts 
some d functions (for extra flexibility) on the heavy atoms C and O, the total number of 
basis functions would be only 38. However, in a full CI that considered every possible 
way to occupy the 38 MOs with the molecule’s 18 electrons, we would have to optimize 
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2.4  x 1013 expansion coefficients (!), and this is really a rather small basis set for 
chemical purposes... 
 
 Configuration Interaction with a Single Determinant Reference.  In most cases, it 
is impractical to include all possible excited configurations and do a full CI. However, 
what if we were to reduce the CI problem by allowing only a limited number of other 
determinants to be included in the wave function? How many should we include? To 
proceed in evaluating this question, it is helpful to rewrite eq. 37-1 using a more 
descriptive notation, i.e., 
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where i and j are occupied MOs in the HF “reference” wave function, r and s are virtual 
MOs in ΨHF, and the additional CSFs appearing in the summations are generated by 
exciting an electron from the occupied orbital(s) indicated by subscripts into the virtual 
orbital(s) indicated by superscripts. Thus, the first summation on the r.h.s. of eq. 37-6 
includes all possible single electronic excitations, the second includes all possible double 
excitations, etc. 
 

If we assume that we do not have any problem with non-dynamical correlation, 
we may assume that there is little need to reoptimize the HF MOs even if we do not plan 
to carry out the expansion in eq. 37-6 to its full-CI limit. In that case, the problem is 
reduced to determining the expansion coefficients for each excited CSF that is included.  

 
This situation is rather analogous to the LCAO approach for forming MOs. In 

LCAO, we need to find the coefficients for basis functions to make an MO. Here, we 
need to find the coefficients for determinants to make a wave function. So, the usual 
secular equation approach can be employed. The energies E of N different CI wave 
functions (i.e., corresponding to different variationally determined sets of coefficients) 
can be determined from the N roots of the CI secular equation 
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where 
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H is the Hamiltonian operator and the numbering of the CSFs is arbitrary, but for 
convenience we will take Ψ1 = ΨHF and then all singly-excited determinants, all doubly-
excited, etc. Solving the secular equation is equivalent to diagonalizing H, and permits 
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determination of the CI coefficients associated with each energy. While this is presented 
without derivation, the formalism is entirely analogous to that we’ve used previously in 
class. Note that different determinants are always orthogonal to one another since the 
different MOs that are occupied in each one are orthogonal to one another (having been 
determined from an HF calculation), so S = 1 and energy E only appears in diagonal 
elements of the CI secular determinant. 
 
 To solve eq. 37-7, we need to know how to evaluate matrix elements of the type 
defined by eq. 37-8. To simplify matters, recall that the Hamiltonian operator is 
composed only of one- and two-electron operators. Thus, if two CSFs differ in their 
occupied orbitals by 3 or more orbitals, every possible integral over electronic 
coordinates hiding in the r.h.s. of eq. 37-8 will include an overlap between at least one 
pair of different, and hence orthogonal, HF orbitals, and the matrix element will 
necessarily be zero. For the remaining cases of CSFs differing by two, one, and zero 
orbitals, one simply has to evaluate the surviving integrals over the one- and two-electron 
operators in the Hamiltonian. 
 

One simplification is that matrix elements between the HF determinant and 
singly-excited determinants are always zero. This situation was first proven by Brillouin, 
so it is called “Brillouin’s theorem”. To appreciate Brillouin’s theorem, let’s take a 
simple example of a two-determinant wave function for a two-electron system with two 
MOs a and r where the HF determinant is  
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We’re considering only the spatial part of the wave function since the Hamiltonian does 
not depend on spin. The singlet spin function ensures antisymmetry and will integrate to 
two in all wave function products, even though we are not writing it out explicitly. 
 
 The singly excited determinant of interest is 
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So, now let us evaluate the matrix element in eq. 37-8 
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where the simplification at the end comes from the equivalence of the two different 
expectation values in the middle line:  they differ only by electron labeling. 
 
 Evaluation of the final integral (let’s assume a single nucleus for simplicity of 
notation) gives 
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The orthonormality of the HF MOs simplifies the first 4 terms. The operator in the last 
term is the Coulomb operator J2, which runs over all other electrons (there’s only one in 
this case) and computes the repulsion between those other electrons and the two basis 
functions for which it is being evaluated for electron 2. 
 
 Note that if we combine the surviving terms into a single Dirac braket we have 
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where the terms in the first line on the r.h.s. simply define the Fock operator for electron 
2 (there is no exchange operator in our example because there are no same-spin electrons 
to worry about). Since orbital r is an eigenfunction of the fock operator with energy 
eigenvalue εr, the integral simplifies to an overlap integral between a and r, but that is 
zero. 
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 A formal proof of Brillouin’s theorem for the completely general case is 
notationally more formidable, but still reduces to the matrix element between the HF 
determinant and the excited determinant being < a | f | r >, which is always zero. 
 
 It is not the case that arbitrary matrix elements between other determinants 
differing by only one occupied orbital are equal to zero. Nevertheless, the CI matrix in a 
broad sense is reasonably sparse, as illustrated in the below figure. With that in mind, 
next time we will consider the question of which excitations to include in a “non-full” CI. 
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Figure.  Structure of the CI matrix as blocked by classes of determinants. The HF block 
is the (1,1) position, the matrix elements between the HF and singly excited determinants 
are zero by Brillouin’s theorem, and between the HF and triply and higher excited 
determinants are zero as well. In a system of reasonable size, remaining regions of the 
matrix become increasingly sparse, but the number of determinants in each block grows 
to be extremely large. Thus, the (1,1) eigenvalue is most affected by the doubles, then by 
the singles, then by the triples, etc. 
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Homework 
 
To be solved in class:   
 

For molecular hydrogen, H2, in a minimal basis, there is a filled σ orbital and a 
virtual σ* orbital. A CI calculation includes only state 1, | σ2 >, and state 2, | σ*2 >. Show 
that the CI ground-state energy for H2 is lower than the HF energy (you don’t have to 
reduce anything to actual numbers; this can be done simply from knowledge of the matrix 
elements in general form). 
 
To be turned in for possible grading May 5:  none—look for inspiration for your haiku. 
 
 


