
Chemistry 4021/8021 Computational Chemistry 3/4 Credits 
 Spring Semester 2014 
 ( Due 2 / 26 / 14 ) 
 
Using PC Model, answer the questions below. If you have 
questions/issues working on this Problem Set, do please consider using 
Piazza to address them. 
 
1. What are the parameters for the force constant (mdyne/Å) and 

equilibrium bond length (Å) for the bond between a carbonyl 
carbon and a carbonyl oxygen in each of the MM3, MMX, and 
MMFF94 force fields? What is the parameter for the equilibrium 
bond length between two sp3 carbon atoms in the MMX force 
field? If you were to pick a “canonical” value for a C–C single 
bond between two sp3 carbon atoms, what would it be to the 
nearest hundredth of an angstrom (explain how you made your 
choice)? How does that compare to the MMX parameter? Run a 
geometry optimization of ethane with the MMX force field. Is the 
optimized C–C bond length equal to the MMX equilibrium bond 
length parameter? If not, explain why not. 

 
 C=O parameters:  MM3, 10.1 mdyne/Å, 1.208 Å; MMX, 10.8 

mdyne/Å, 1.208 Å; MMFF94, 12.95 mdyne/Å, 1.222 Å.  
 
 MMX C–C equilibrium bond length:  1.523 Å. The usual value in 

textbooks for a C–C single bond between two sp3 carbon atoms is 
1.54 Å, which is longer. However, the geometry optimization with 
MMX leads to a value of 1.532 Å. The reason it is longer than the 
parameter is that there are other strain contributors that must be 
minimized other than just bond stretch (primarily the repulsive non-
bonded van der Waals interactions between the H atoms on the two 
different methyl groups, which contribute 0.679 kcal/mol worth to 
the total strain of 0.816 kcal/mol). 

 
 
2. Oh no! Someone spilled a solution of plutonium salts onto the 

Chemistry Department’s softball trophy from that famous 1934 
championship that saw Mathematics and Chemistry go 73 
scoreless innings over the course of four days before I. M. 
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Kolthoff himself powered one over the left field fence, shattering 
the windshield of the Dean’s Cadillac V16 Aerodynamic Coupe. 

 
 You probably know that plutonium (Pu) is one of the deadliest 

substances on Earth in addition to being highly radioactive. But, 
we can’t throw away the trophy! The only remedy will be to soak 
the wooden base, into which the Pu has leached, in a solution 
containing a sequestering agent that will extract the Pu from 
the wood until the remaining amount of Pu in the wooden base 
falls below femtogram levels. The organic and inorganic 
chemists have huddled together, and propose the 3 molecules 
shown on the next page, each of which can be synthesized for the 
indicated cost per gram. Given that this money has to come out 
of the seminar donut fund, they want to choose the most cost 
effective option. Which molecule should they make? Justify your 
answer on the basis of molecular mechanics calculations, 
explaining precisely and in detail what you did in order to come 
to some conclusion. (As it is mildly tricky to interpret 
stereochemistry for the final structure, absolute assignments at 
each position are provided for completeness.) For purposes of 
this exercise, let’s assume the speciation of Pu is entirely high-
spin Pu(IV). 
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This is by no means a trivial problem — many reasonable answers could 
be offered. Here’s what I did: 
 
First, the issue of synthetic cost is balanced by binding efficiency. If the 
third macrocycle costs 100 times the second, but binds 10,000 times 
stronger, it will be more cost effective to synthesize the more expensive 
one because it will require much less of it to leach the Pu to an acceptable 
level. Put more chemically, we care about the equilibrium 
 

trophy • Pu  +  macrocycle  !  trophy  +  macrocycle•Pu 
 

which has an associated equilibrium constant 
 

€ 

K =
trophy[ ] macrocycle•Pu[ ]
trophy•Pu[ ] macrocycle[ ]  

 
where we want the ratio of trophy to trophy•Pu to exceed 1015, which 
means we will want to maximize the binding of Pu to macrocycle. We can 
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see this by expressing the above equilibrium as the sum of two others, 
namely 
 

trophy • Pu  !  trophy  +  Pu 
Pu  +  macrocycle  !  macrocycle•Pu 

 
the first is a constant about which we can do nothing, but the second is 
what we have some hope of adjusting. So, how can we compute the free 
energy of binding? In practice, that’s a lot of work, because free energy 
will require a careful sampling over phase space. But, a quick estimate 
can be had from replacing free energy with potential energy, and further 
assuming that we can deal just with lowest energy isomers. And, we can 
recognize that we aren’t trying to get an accurate absolute binding energy, 
we just want a relative binding energy. 
 
So, what controls binding energy? Well, let’s assume that all 3 crowns will 
complex the Pu atom equally well once they adopt a nice geometry (see 
figure on next page for the second crown), so then the question becomes, 
how much energy must they lose in order to adopt that optimal structure 
compared to their lowest energy uncomplexed structure? 
 
To estimate that, I chose the MMX force field. I generated the best 
structure I could for the simplest crown with a metal, Pu, chosen to be 
bonded (not metal coordinated) to the six heteroatoms. I chose bonded 
because the choice of “metal coordination” led to only 4 heteroatoms 
being less than 3 Å from the metal, and I did not consider this reasonable. 
I might be making a mistake, but, hey, the trophy is glowing and I needed 
to make some progress, so there’s no point sitting around existentially 
paralyzed about the whole thing. 
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Figure.  Tube representation of optimal crown•Pu complex for second 
macrocycle; hydrogen atoms have been removed for clarity. Carbon, 
nitrogen, oxygen, and plutonium atoms are cyan, blue, red, and gray, 
respectively. 
 
Based on this geometry, I then generated analogous geometries for the 
other two crowns. In each case, I then deleted the Pu atom and computed 
single point energies for the crowns. Then, I minimized them and looked at 
how much the energy dropped; that is, what did it cost them to adopt that 
geometry. To be thorough, I then did GMMX searches for the global 
minimum, taking 1000 steps in each case. As a technical point, I did all of 
this without lone pairs in the MMX calculations. However, for two cases, I 
checked whether including lone pairs made a difference, and they did not 
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seem to affect my energy differences, so this point may have been moot. 
My results are shown in a table on the next page. 
 
Table.  Steric energies (kcal/mol) for different crowns. 
 

Cost ($) Frozena Relaxedb Fully relaxedc Distortion 
costd 

1. 85.6 44.4 35.0 50.6 
10. 123.0 95.1 89.2 33.8 

1,000. 135.6 104.3 97.1 38.5 
a Computed for empty crown at the frozen geometry of the optimized crown•Pu complex.  
b Energy for structure that derives from direct geometry optimization of the frozen, 
uncomplexed crown.  c Lowest energy structure found from 1,000 steps of GMMX 
optimization.  d Computed as difference between columns 2 and 4. 
 
As can be seen from the table, the $10 crown has the lowest distortion 
cost to form the proper pocket to complex Pu. As that cost is much more 
than 1.4 kcal/mol better than that for the $1 crown, the improved binding is 
much better than the factor of 10 difference in the cost. So, the chemists 
should synthesize the $10 crown. 
 
There are many other things that could be discussed with respect to this 
problem, and there are certainly other reasonable approaches that could 
be taken -- credit will be awarded based on logical thoughts/procedures, 
not based on absolute similarity to the solution proposed here. 
 
 
3. Consider the interaction between two molecules of pyrazine (i.e., 

the pyrazine dimer). What geometries do pyrazine dimers adopt 
and what are their associated complexation energies as 
calculated with the MMX, MM3, and MMFF94 force fields? 
Compare/contrast the different force-field results. From the 
components that contribute to your results, what can you say 
about the nature of the intermolecular interactions in this dimer 
(i.e., what type of interaction(s) is/are dominant?) 

 
Now, assume that you would like to create a force field specific 
to the pyrazine dimer. And, assume that you have access to 
supercomputing resources that allow you to compute “exact” 
interaction energies for any geometry, but the timeline of the 
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project limits you to the calculation of no more than 100 single-
point energies. The ultimate goal of the project is to design a 
force field that will approximate the exact interaction energies 
in a coarse-grained fashion; that is, think about how you might 
reduce the number of variables from 54 (3N – 6 for two pyrazine 
molecules) to a much smaller number, and then how would you 
sample over those variables and come up with an overall 
function fitting the relevant energies. How would you choose 
your 100 points? 

 
Again, there are many possible ways to approach this problem, but a first 
step is recognizing the complexation energy to be:  
 

Ecomplex = Edimer − 2* Emonomer( )  
 
where Edimer and Emonomer are the optimized pyrazine dimer and optimized 
pyrazine molecule at their respective geometries (that is, intramolecular 
distortion is taken into account).  
 
With the three force fields tested, the monomer geometry is unambiguous, 
and the computed force field energies are reported in Table 1.  The dimer 
energy, however, is dependent on the geometric orientation, for which 
there are a number of local minima.  One could describe these dimers as 
planar hydrogen bonded (C-H—N), Pi stacked, or some other orientation 
(most commonly found as something out of plane or T-Shaped).  The 
lowest energy dimer geometries are pictured in Figure 1, and their force 
field energies are reported in Table 2.  The complexation energies 
corresponding to the various orientations are given in Table 3, as 
computed by the Ecomplex equation above.   
  
Table 1: Monomer computed force field energies in kcal/mol.  

 MMX MM3 MMFF94 
Monomer E 29.7 18.2 52.5 

 
Table 2: Dimer computed force field energies in kcal/mol.  The (a,b,c) indices refer to 
Figure 1.    

Dimer E MMX MM3 MMFF94 
Planar 

(CH—N) 
59.4 (b)  101.7 (c) 

Pi Stacked 56.4 (a) 32.5 (a) / 
32.6 (b) 

100.2 (a) 

Out of 
Plane 

60.0 (c)  101.1 (b) 
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Table 3: Interaction energies in kcal/mol 
Interaction E MMX MM3 MMFF94 

Planar 
(C-H—N) 

0.0  -3.3 

Pi Stacked -3.0 -3.9/-3.8 -4.8 
Out of 
Plane 

+0.6  -3.9 

 
 

 
Figure 1: Dimer geometries found using the GMMX option in PC Model 
with the 3 force fields.  Relative energetics associated with these 
geometries are given in Table 2.    
 
All of the force fields find a pi-stacked pyrazine dimer as the lowest in 
energy. The magnitude of the interaction energy for this structure is 
quantitatively similar for all of the investigated force fields.  However, while 
the other force fields find other dimer minima relatively close in energy, 
MM3 finds only pi-stacked minima.  Additionally, MM3 is the only force 
field that finds a “slipped” pi-stacked dimer geometry as a minimum (albeit 
a slightly higher energy minimum), while the MMX and MMFF94 force 
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fields do not find the “slipped” pi-stacked minima, but rather a ‘sandwich-
type’ stacked pi-stacked minimum. 
 
These results suggest that the three force fields investigated in this work 
all take into account aromatic pi-pi interactions in a favorable way, while 
only some of the force fields take into account “Hydrogen-bonded” type C-
H—N interactions in such a favorable way.  In all cases, the force fields 
predict that aromatic pi-pi interactions in the pyrazine dimer yield more 
favorable energetic minima as compared to the hydrogen bonded or out-
of-plane alternative minima.  
 
So in general, one could say that aromatic pi-pi “dispersion-type” 
interactions are taken into account by the force fields employed here, and 
in this particular dimer, those interactions dominate over any hydrogen 
bonded C-H—N type of interactions.    
 
Now, let us move on to the coarse graining and creation of a force field 
specific for this dimer. 
 
I will start with the assumption that it is reasonable to approximate 
intermolecular interaction energies without the need for explicitly taking 
into account geometric distortions due to polarization of one pyrazine 
molecule due to the presence of the second pyrazine molecule (that is, I 
will only calculate intermolecular interaction energies at monomer 
optimized rigid geometries).   
 
Considering the symmetry of the pyrazine molecule, I can decide to treat 
my atoms as ‘atom-types’ rather than atoms, in order to reduce the 
computational complexity of considering each C atom independently or, 
for example, treating all C’s as equivalent since they are equivalent by 
symmetry.  Fortunately, I can say that all of my N atoms in a given 
pyrazine molecule are equivalent by symmetry, and the same is true for all 
of the C and H atoms of a given pyrazine molecule.   
 
Considering the initial screening using the three force fields above, I chose 
to distribute my 100 points along potential energy coordinates 
corresponding to the minima shown above in Figure 1.  If I would like to 
have these parameters be compatible with, let’s say, later 
parameterization or with an existing force field, I could choose to use the 
Lorentz-Berthelot combining rules with a standard Lennard-Jones 12-6 
potential for non-bonded interactions between atoms in different rings, 
which means that I would have to fit, in total, 6 parameters (sigma and 
epsilon of each H, C, and N). 
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An alternative coarse-grained model might involve a focus on seven 
coordinates:  the distance between the centers of mass of any two rigid 
pyrazine molecules, and the three rotation angles about each center of 
mass needed to define fully the orientation of an individual pyridine. The 
energy functions of this one distance and six angles would need to be fit to 
reasonable functional forms (e.g., a Lennard-Jones form for the distance 
and some suitable periodic form for the angles). The 100 points could be 
chosen by random displacements of these coordinates from the various 
equilibrium structures (since one wants the force field to be most accurate 
for the lowest energy structures, these being the most relevant at low 
temperatures). 
 


