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A One-Slide Summary of Quantum Mechanics

Fundamental Postulate:

O  ! = a !

operator

wave function

(scalar)
observable

What is !? ! is an oracle!

Where does ! come from? ! is refined

Variational Process

H ! = E !

Energy (cannot go
lower than "true" energy)

Hamiltonian operator
(systematically improvable)

electronic road map:  systematically
improvable by going to higher resolution

convergence of E

truth

What if I can't converge E ? Test your oracle with a question to which you
already know the right answer...



Constructing a 1-Electron Wave Function
The units of the wave function are such that its square is electron per
volume. As electrons are quantum particles with non-point distributions,
sometimes we say “density” or “probability density” instead of electron per
volume (especially when there is more than one electron, since they are
indistinguishable as quantum particles)

For instance, a valid wave function in cartesian coordinates for one electron
might be:
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Constructing a 1-Electron Wave Function
To permit additional flexibility, we may take our wave function to be a linear
combination of some set of common “basis” functions, e.g., atomic orbitals
(LCAO). Thus
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For example, consider the wave
function for an electron in a C–H bond.
It could be represented by s and p
functions on the atomic positions, or s
functions along the bond axis, or any
other fashion convenient. H

C



Constructing a 1-Electron Wave Function
To optimize the coefficients in our LCAO expansion, we use the variational
principle, which says that
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which is minimized by one root E of the “secular equation” (the
other roots are excited states)—each value of E that satisfies the
secular equation determines all of the ai values and thus the shape
of the molecular orbital wave function (MO)
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What Are These Integrals H?
The electronic Hamiltonian includes kinetic energy, nuclear attraction, and,
if there is more than one electron, electron-electron repulsion

The final term is problematic. Solving for all electrons at once is a
many-body problem that has not been solved even for classical
particles. An approximation is to ignore the correlated motion of the
electrons, and treat each electron as independent, but even then, if
each MO depends on all of the other MOs, how can we determine
even one of them? The Hartree-Fock approach accomplishes this
for a many-electron wave function expressed as an
antisymmetrized product of one-electron MOs (a so-called Slater
determinant)
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Choose a basis set

Choose a molecular geometry q(0)

Compute and store all overlap, 
one-electron, and two-electron 

integrals
Guess initial density matrix P(0)

Construct and solve Hartree- 
Fock secular equation

Construct density matrix from 
occupied MOs

Is new density matrix P(n) 

sufficiently similar to old 

density matrix P(n–1) ?

Optimize molecular geometry?

Does the current geometry 
satisfy the optimization 

criteria?

Output data for optimized 
geometry

Output data for
unoptimized geometry

yes

Replace P(n–1) with P(n)

no

yes no

Choose new geometry 
according to optimization 

algorithm

no

yes
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The Hartree-
Fock procedure
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One MO per root E



• Slater Type Orbitals (STO)

– Can’t do 2 electron integrals analytically
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• 1950s
– Replace with something similar that is

analytical: a gaussian function
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Approximating Slater Functions with Gaussians
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primitive gaussians

STO-3G

Slater function

Contracted basis function
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Contracted Basis Set

• STO-#G - minimal basis
• Pople - optimized a and α values



• What do you about very different bonding
situations?
– Have more than one 1s orbital

• Multiple-ζ(zeta) basis set
– Multiple functions for the same atomic orbital

H F vs. H H



• Double-ζ – one loose, one tight
– Adds flexibility

• Triple-ζ – one loose, one medium, one tight
• Only for valence



• Decontraction
– Allow ai to vary

• Pople - #-##G
– 3-21G! 
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How many basis functions are for NH3 using 3-21G?

NH3 3-21G

atom # atoms AO degeneracy basis fxns primitives total basis fxns total primitives

N 1 1s(core) 1 1 3 1 3

2s(val) 1 2 2 + 1 = 3 2 3

2p(val) 3 2 2 + 1 = 3 6 9

H 3 1s(val) 1 2 2 + 1 = 3 6 9

total = 15 24



Polarization Functions

• 6-31G**

6 primitives
1 core basis functions

2 valence basis functions
one with 3 primitives, the other with 1

1 d functions on all heavy atoms (6-fold deg.)

1 p functions on all H (3-fold deg.)



• For HF, NH3 is planar with infinite basis set
of s and p basis functions!!!!!

• Better way to write – 6-31G(3d2f, 2p)
• Keep balanced

Valence split  polarization

2 d, p

3 2df, 2pd

4 3d2fg, 3p2df

O
+

O

H H

= O



Dunning basis set

cc-pVNZ

correlation consistent

polarized

N = D, T, Q, 5, 6



Diffuse functions
• “loose” electrons

– anions
– excited states
– Rydberg states

• Dunning - aug-cc-pVNZ
– Augmented

• Pople
– 6-31+G - heavy atoms/only with valence
– 6-31++G - hydrogens

• Not too useful



How many basis functions in H2POH
using 6-31G(d, p)?




