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Why is electronic structure theory important?   

Most of the information we want to know about chemistry is in the 
electron density and electronic energy. 

dipole moment, 
charge distribution, 
... 

Born-Oppenheimer 
approximation 1927 

potential energy surface 

molecular geometry     barrier heights 
bond energies             spectra 



Erwin Schrödinger 1925 — wave function theory 

Example: electronic structure of benzene (42 electrons) 

All the information is contained in the wave 
function, an antisymmetric function of 126 
coordinates and 42 electronic spin components. 

How do we calculate the electronic structure?   





Theoretical Musings!
●  Ψ is complicated. 
●  Difficult to interpret.  
●  Can we simplify things? 
●  Ψ has strange units: (prob. density)1/2, 
●  Can we not use a physical observable? 
●  What particular physical observable is useful? 
●  Physical observable that allows us to construct 

the Hamiltonian a priori. 



Erwin Schrödinger 1925 — wave function theory 

Example: electronic structure of benzene (42 electrons) 

All the information is contained in the wave 
function, an antisymmetric function of 126 
coordinates and 42 electronic spin components. 

Pierre Hohenberg and Walter Kohn 1964 —  
density functional theory 

All the information is contained in 
the density, a simple function of 3 
coordinates.  

How do we calculate the electronic structure?   



Erwin Schrödinger 1925 — wave function theory 

Walter Kohn 1964 and continuing work —  
density functional theory 

Nobel Prize in Physics 1933 

Nobel Prize in Chemistry 1998 
(with John Pople, for practical WFT) 

Electronic structure (continued)   



wave function theory 

How do we do the calculation?   

€ 

HΨ = EΨ
E = minΨ Ψ H Ψ Ψ ≡ trial wave function

density functional theory 

  

€ 

E = minn V∫ nuclei
 r ( )n  r ( )d 3 r + F n  r ( )[ ]{ }

n ≡ trial density;  F ≡  universal functional



wave function theory 

density functional theory 

What’s the problem?   

Paul Dirac 1929:  “the difficulty is only that the 
exact application of these laws leads to equations 
much too complicated to be soluble.” 

We do not even have an equation for F ! 

€ 

HΨ = EΨ

  

€ 

E =minn V∫ nuclei
 r ( )n  r ( )d 3 r + F n  r ( )[ ]{ }



Density Functional Theory 

Early Approximations 
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On what does H depend?!
●  Position and atomic number of the nuclei.  

●  Total number of electrons, N. 

●  A good physical observable:  the electron density 

●  Number of electrons per unit volume in a given state is the electron 
density for that state. 

●  ρ integrated over all space gives N: 

●  The nuclei are effectively point charges:  

●  Their positions correspond to local maxima in the electron density 

●  Maxima are also cusps. € 

N = ρ(r)dr∫

  

€ 

ρ r( ) = N …∫ Ψ r,x2,...,xN( )Ψ r,x2,...,xN( )dx2 ...dxN∫



Intuitive Apparent Equivalence!
●  Assignment of the nuclear atomic numbers. 

●  The atomic number can be obtained from the electron density. 

●  For any nucleus A located at an electron density maximum rA 

●  ZA: atomic number of A, rA radial distance from A,         

●           spherically averaged density 

●  Of course, we do not yet have a simple formalism for finding 
the energy. 

●  But, given a known density, one could form the Hamiltonian 
operator, solve the Schrödinger equation and determine the 
wave functions and energy eigenvalues. 

€ 

∂ρ rA( )
∂rA rA = 0

= −2ZAρ rA( ) 1( )

€ 

ρ rA( )



Early Approximations!
●  Energy is separable into kinetic and potential components. 

●  Use only the electron density to determine the molecular 
energy: consider the system as classical: 

●   easy to determine the components of the potential energy. 

●  Nuclear-electron attraction 

●  Self-repulsion of a classical charge distribution 

●  r1, r2 dummy integration variables running over all space. 

€ 

Vne ρ r( )[ ] =
Zk

r − rk
∫

k

nuclei

∑ ρ r( )dr 2( )

€ 

Vee ρ r( )[ ] =
1
2

ρ r1( )ρ r2( )
r1 − r2

dr1dr2∫∫ 3( )



Thomas-Fermi Kinetic Energy I!
●  Kinetic energy of a continuous charge distribution. 

●  Introduce a fictitious substance “Jellium”: infinite number of electrons 
moving in an infinite volume of space with uniformly distributed positive 
charge. 

●  Also called uniform electron gas (ueg): constant non-zero density. 

●  Thomas and Fermi (1927) used fermion statistical mechanics to derive 
the kinetic energy for ueg as particles in a box 

●  T, V are functions of the density, while the density is a function of three 
spatial coordinates. 

●  A function whose argument is itself a function is called a “functional”. 

●  T, V are density functionals. 

€ 

Tueg ρ r( )[ ] =
3
10

3π 2( )2 3 ρ5 3 r( )dr∫ 4( )



Thomas-Fermi Model!
●  TF equations together with an assumed variational principle, 

represent the first effort to define a Density Functional Theory. 

●  Energy is computed with no reference to the wave-function. 

●  No use in modern quantum chemistry: all molecules unstable 
relative to dissociation into atoms. 

●  Huge approximation in (3) for the interelectronic repulsion: it 
ignores the energetic effects associated with correlation and 
exchange. 

●  Hole function: h corrects for the energetic errors introduced by 
assuming a classical behaviour. 

€ 

Ψ
1
riji< j

N

∑ Ψ =
1
2

ρ r1( )ρ r2( )
r1 − r2

∫∫ dr1dr2 +
1
2

ρ r1( )h r1;r2( )
r1 − r2

∫∫ dr1dr2 5( )



Hole Function I!

●  LHS of (5) is the exact QM interelectronic repulsion. 

●  Second term on RHS corrects for the errors in the first term 
(the classical expression). 

●  Hole function h associated with ρ is centred on the position 
of electron 1 and is evaluated from there as a function of 
the remaining spatial coordinates defining r2. 

●  The value and form of h varies as a function of r2 for a 
given value of r1. 

●  One electron system: LHS of (5) must be zero. 

●  First term of RHS of (5) is not zero since             throughout 
space. 

€ 

Ψ
1
riji< j

N

∑ Ψ =
1
2

ρ r1( )ρ r2( )
r1 − r2

∫∫ dr1dr2 +
1
2

ρ r1( )h r1;r2( )
r1 − r2

∫∫ dr1dr2 5( )

€ 

ρ ≥ 0



Hole Function II!

●  In the one-electron case h is simply the negative of 
the density. 

●  In the many-electron case: exact form of h can rarely 
be established. 

●  h both corrects for self-interaction error (SIE) and 
accounts for exchange and correlation energy in a 
many-electron system. 



Slater Exchange I!
●  HF by construction avoids SIE and exactly evaluates the 

exchange energy (correlation is a problem, though). 

●  Slater (1951): one of the consequences of the Pauli 
principle is that the Fermi exchange hole** is larger than 
the correlation hole. 

●  Exchange corrections to classical interelectronic repulsion 
larger than correlation corrections (one or two order of 
magnitude). 

●  Slater decided to ignore correlation corrections, and 
simplify the exchange corrections. 

●  **:Consequence of the Pauli exclusion principle. Reduced 
probability of finding two electrons of the same spin close to 
one another. Fermi hole surrounds each electron. 



Slater Exchange II!

●  Exchange hole about any position: sphere of constant 
potential; radius depending on the magnitude of the density at 
that position. 

●  With this approximation the exchange energy is 

●  In the Slater derivation: α=1. 

●  Eq. (6): Slater exchange. € 

Ex =
9α
8

3
π

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
1 3

ρ 4 3 r( )∫ dr 6( )

Unit analysis challenge:  Satisfy yourself that 4/3 is the proper 
exponent on the density in order to compute an energy. What about 
eq. 4 earlier? Is 5/3 correct for kinetic energy? 



Xα!

●  Many early workers saw fit to treat alpha as an empirical 
value. 

●  HF calculations employing eq (6) instead of doing exchange 
“properly” called Xα (or Hartree-Fock-Slater (HFS)). 

●  Empirical analysis in a variety of systems suggested that 
α=3/4 provides more accurate results than α =1 or α =2/3. 

●  DFT (and HFS) models up to this point gave generally large 
errors in molecular calculations and had relatively little impact 
on chemistry, although the physics community found them 
useful because their “locality” facilitates, say, solid-state 
calculations. 
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Rigorous Foundation!
●  Hoenberg and Kohn (1964) proved two theorems which establish 

DFT as a rigorous quantum chemical methodology. 

●  Electrons interact with one another and with an external 
potential. 

●  Hohenberg-Kohn theorem employs the ground-state density. 

●  External potential is the attraction to the nuclei. 

●  Integration of the density: number of electrons. 

●  It remains to determine the external potential for the real system 
(charges and positions of the nuclei). 

●  The ground-state density uniquely determines the external 
potential. 

●  Proof proceeds via reductio ad absurdum. 



Hohenberg Kohn Theorem I!
●  Assume that two different external potentials can each be 

consistent with the same non-degenerate ground-state 
density ρ0. 

●  Call potentials:  va and vb. 

●  Potentials determine Hamiltonians Ha and Hb. 

●  Associate with each Ha and Hb a ground-state wave 
function Ψ0 and eigenvalue E0. 

●  Variational theorem: the expectation value of Ha over the wf 
b must be higher than the ground-state energy of a. 

€ 

E0,a < Ψ0,b Ha Ψ0,b 7( )



Hohenberg Kohn Theorem I!

●  Potentials v are one-electron operators: 

●  Last line of (8) can be written in terms of the ground state 
density: 

●  No distinction between a and b, we can interchange the 
indices in (9) 

€ 

E0,a < Ψ0,b Ha −Hb +Hb Ψ0,b

< Ψ0,b Ha −Hb Ψ0,b + Ψ0,b Hb Ψ0,b

< Ψ0,b va − vb Ψ0,b +E0,b 8( )

€ 

E0,a < va r( )− vb r( )[ ]∫ ρ0 r( )dr +E0,b 9( )

€ 

E0,b < vb r( )− va r( )[ ]∫ ρ0 r( )dr +E0,a 10( )



Hohenberg Kohn Theorem I!
●  Add (9) and (10): 

●  assumption that the ground state densities 
associated with the wave functions a and b are the 
same permits us to eliminate the integrals as they 
must sum to zero. 

●  Impossible result: our initial assumption was 
incorrect. 

€ 

E0,a +E0,b <

vb r( )− va r( )[ ]∫ ρ0 r( )dr + va r( )− vb r( )[ ]∫ ρ0 r( )dr
+E0,b +E0,a

< E0,b +E0,a 11( )



Hohenberg Kohn Theorem I!
●  The non-degenerate ground-state density must 

determine the external potential          Hamiltonian  

         wave function. 

●  H determines not just the ground-state wave 
function, but all excited-state wave functions. 

●  What utility are the densities of the excited states? 

●  HK theorem can be extended to the lowest energy 
(non-degenerate) state within each irrep of the 
molecular point group. 



Hohenberg Kohn Theorem II!
●  Theorem I: existence theorem. 

●  How to get the density of a system? 

●  Just as with MO theory: need a way to optimize the energy. 

●  HK II theorem: the density obeys a variational principle. 

●  Have some well-behaved density: integrate to the proper 
number of electrons N. 

●  Theorem I: this density determines a candidate wave 
function Ψcand 

●  Energy expectation value: 

€ 

Ψcand Hcand Ψcand = Ecand ≥ E0 12( )



Hohenberg Kohn Theorem II cont.!
●  In principle: choose different densities and those that 

provide the lower energies are closer to correct. 

●  How do we choose improved densities? 

●  We want to avoid solving the Schrödinger equation. 

●  How can the density be used in a variational equation to 
determine the energy without recourse to the wave 
function? 
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Kohn-Sham Self-consistent field!
●  Trick: Take a fictitious system of non-interacting electrons  

where ground-state density is the same density as the real 
system where the electrons interact. 

●  Real and fictitious system have the same positions and atomic 
numbers of the nuclei (same density) 

●  An easy Hamiltonian:  a sum of one-electron operators. 

●  Eigenfunctions: Slater determinants of the individual one-
electron eigenfunctions (cf. text, Section 4.5.1). 

●  Eigenvalues:  sum of one-electron eigenvalues (cf. text, 
Section 4.5.1). 



Kohn-Sham Density Functional Theory 

E = T + Vne + Vee + Vxc 

Noninteracting  
kinetic energy 

Coulomb  
interaction 
with nuclei 

Consider the electronic energy of a molecule: 

Coulomb interaction 
of electron density  
ρ with itself 

Electron cannot 
interact with itself. 

Write density 
as a product of 
orbital densities;  
compute T  
from orbitals. 

1965 



Kohn-Sham Self-consistent field!
●  Divide energy functional into specific components 

●  Tni: kinetic energy of non-interacting electrons 

●  Vne: nuclear-electron interaction 

●  Vee: classical electron-electron repulsion 

●  ΔT: correction to kinetic energy 

●  ΔVee: all non-classical corrections to el.-el. repulsion energy 

€ 

E ρ r( )[ ] =Tni ρ r( )[ ] +Vne ρ r( )[ ] +Vee ρ r( )[ ]
+ΔT ρ r( )[ ] +ΔVee ρ r( )[ ] 13( )



KS SCF II!
●  Express the density in an orbital basis set: 

●  N: number of electrons. 

●  Density for a Slater determinantal wf (exact for the non-
interacting system) € 

E ρ r( )[ ] = χ i −
1
2
∇i
2 χ i − χ i

Zk

ri − rkk

nuclei

∑ χ i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i

N

∑ 14( )

+ χ i
1
2

ρ r'( )
ri − r'

dr'∫ χ i
i

N

∑ +Exc ρ r( )[ ]

€ 

ρ r( ) = χi r( ) 2

i=1

N
∑ 15( )



Simplest functional: LSDA 

local spin-density approximation 
 Kohn & Sham 1965, von Barth & Hedin 1972 

  

€ 

Energy = TKS +Ven +Vee + d3 r ρ  r ( )∫ εx ρ  r ( )[ ] +εc ρ  r ( )[ ]{ }

Exchange energy  
of uniform electron gas 
neutralized by uniform  
positive background charge 

= –0.73856 ρ1/3 (from Dirac α=2/3) 

Correlation energy.  
Fit to Monte Carlo  
calculations for  
uniform electron gas 

Example: for a closed-shell system: 

density 



KS SCF III 
●  Difficult terms ΔT and ΔVee are contained in: 

●  Exc: exchange-correlation energy. It includes: 

 1) effects of quantum mechanical exchange and correlation  

 2) correction for the classical self-interaction energy 

 3) difference in kinetic energy between the non-interacting 
system and the real one 

●  Find orbitals χ that minimize E in (13). They satisfy: 

●  KS operator is one-electron operator! 

€ 

hi
KSχ i = εiχ i 16( )

€ 

hi
KS = −

1
2
∇ i
2 −

Zk

ri − rkk

nuclei

∑ +
ρ r'( )
ri − r'

dr'+Vxc∫ 17( )



KS SCF IV 
●  Where: 

●  Vxc is a functional derivative.  One-electron operator for which 
the expectation value of the KS Slater determinant is Exc. 

●  Since E (eq (13)) is exact, the orbitals      must provide the 
exact density (the minimum must correspond to the real 
system). 

●  These orbitals also form the Slater-determinantal wave 
function for the separable non-interacting Hamiltonian hi

KS 

€ 

Vxc =
∂Exc

∂ρ
18( )

€ 

χ{ }

  

€ 

hi
KS χ1χ2χN

i=1

N

∑ = εi χ1χ2χN
i=1

N

∑ 19( )



KS SCF V 
●  Use the first term on the r.h.s. of (14) to compute the kinetic 

energy of the non-interacting electrons. 

●  To determine the KS orbitals use the same approach as in 
MO theory: 

●  Express KS orbitals within a set of basis functions {φ}, 
determine the individual orbital coefficients by solution of a 
secular equation entirely analogous to that employed in the 
HF theory. 

●  Replace the Fµν elements by the the Kµν elements 

€ 

Kµν = φµ −
1
2
∇2 −

Zk

r − rk
+

ρ r'( )
r − r'

dr'+Vxc∫
k

nuclei

∑ φν 20( )



HF vs DFT I 
Similarities between HF and KS 

●  Common variational principle 

●  Kinetic energy and nuclear attraction component of matrix elements of K 
are identical to those of F. 

●  If the density in the classical interelectronic repulsion operator is expressed 
in the same basis functions used for the KS orbitals, then the same four-
index electron-repulsion integrals will appear in K as in F. 

●  Density required for computation of the secular matrix elements. 

●  Density determined using the orbitals obtained from the solution of the 
secular equation: 

●  KS procedure is a SCF iterative procedure. 

●  Historically: modify existing codes for HF calculations to perform DFT 
calculations. 



HF vs DFT II  
Key differences between HF and KS 

●  DFT as derived so far contains no approximations: it is exact. 

●  But, we need to know Exc as a function of ρ. 

●  HK: proved that a functional of ρ must exist. 

●  No guidance, though, as to what the functional should look like.  

●  Contrast between HF and DFT: 

●  HF approximate theory: solve the relevant equations exactly. 

●  DFT exact theory: solve the relevant equations approximately because the 
form of the operator is unknown. 

●  Exact DFT is variational. When approximations of Exc are introduced, this is 
no longer true. 

●  Both exact and approximate DFT are size extensive. 
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Exchange-correlation Energy 
●  Exc: difference between the classical and quantum 

mechanical el.-el. repulsion. 

●  It also includes the difference in kinetic energy between the 
fictitious non-interacting system and the real system. 

●  Most functionals do not attempt to compute the K.E. 
correction explicitly. 

●  Either they ignore the term, or construct a hole function 
analogous to that of eq. (5) that also incorporates the 
kinetic energy difference between the interacting and non-
interacting systems, perhaps empirically. 



Exchange-correlation (xc) Functionals  
●  In many functionals, empirical parameters 

introduce some kinetic energy correction based on 
experiment. 

●  Common notations in the field follow 
●  Functional dependence of Exc on ρ expressed as 

an interaction between ρ and an energy density, 
that is itself dependent on the electron density 

€ 

Exc ρ r( )[ ] = ρ r( )∫ ε xc ρ r( )[ ]dr 21( )



xc Functionals II 
●  Energy density εxc is treated as a sum (separable or not) of 

individual exchange and correlation contributions. 

●  Slater (or Dirac, or empirical [α]) exchange energy density: 

●  Electron density can also be expressed in terms of an 
effective radius such that exactly one electron would be 
contained within the sphere defined by that radius were it to 
have the same density throughout as its center 

€ 

rS r( ) =
3

4πρ r( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 3

23( )

€ 

ε x ρ r( )[ ] = −
9α
8

3
π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1 3

ρ1 3 r( ) 22( )



xc Functionals III 
●  Spin not considered so far. 

●  Use individual functionals of the α and β densities. 

●  Spin density at any position is expressed in terms of the 
normalized spin polarization: 

●  α spin density is one-half of the product of the total ρ and (ζ
+1) and the β spin density is the difference between the 
total rho and that value. € 

ζ r( ) =
ρα r( )−ρβ r( )

ρ r( )
24( )



Local Density Approximation 
●  LDA: any DFT where the value of εxc, at some position r, 

can be computed exclusively from the value of ρ at that 
position, i.e., the ‘local’ value of ρ. 

●  Functionals derived primarily from the uniform electron gas 
(uniform density at every position in space). 

●  L(S)DA implies that it is the UEG exchange and correlation 
functionals that are employed for molecular calculations. 

●  Can be extended to spin-polarized cases (z from eq. (24), 
“0” and “1” refer to “no-spin” and “all-same-spin” UEG). 

€ 

ε x ρ r( ),ζ r( )[ ] = ε x
0 ρ r( )[ ] +

ε x
1 ρ r( )[ ]−ε x0 ρ r( )[ ]{ } 1+ζ( )4 3 + 1−ζ( )4 3 − 2

2 21 3 −1( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

25( )



Local Density Correlation  
●  Correlation energy: no analytical derivation of this 

functional has proven possible. 

●  Quantum Monte Carlo: Ceperley and Alder (1980) 
computed the total energy for fully interacting uniform 
electron gases of various densities. 

●  Subtract the analytical exchange energy to determine the 
correlation energy. 

●  Vosko, Wilk and Nusair (1980): designed local functionals 
of the density fitting to these results. 

●  Spin-polarized functional analogous to (25), but with the 
unpolarized and fully polarized correlation energy densities. 



Local Density Correlation  
●  Different sets of  empirical constants. 

●  VWN: several fitting schemes varying the functional forms. 

●  LSDA that employs a combination of Slater exchange and the VWN 
correlation energy expression: SVWN.  

●  Correlation energy functional is very complex. 

●  DFT methods are often semiempirical: they include empirically 
optimized constants and functional forms. 

●  Solution of Exc integrals typically not possible analytically. 

●  Evaluation of integrals involving exchange and correlation energy 
densities in DFT is done numerically on a grid. 

●  Use of efficient quadrature schemes. 

●  In modern codes: default grid unless otherwise specified by the user. 



KS-SCF Procedure  
●  In HF theory: Number of Coulomb integrals requiring evaluation is  

N4. 

●  In DFT it can be reduced to N3, N number of KS AO basis functions. 

●  After basis set and molecular geometry choice, the overlap 
integrals, kinetic-energy, and nuclear-attraction integrals are 
computed. Same in HF and DFT 

●  HF: construct a density matrix and then compute the two-electron 
integrals: Coulomb and exchange. 

●  DFT: construct a density matrix and also construct Vxc  

●  Evaluate the remaining integrals in each KS matrix element. 

●  After this point KS and HF SCF are identical. 



KS-SCF Procedure II  
●  New orbitals are determined from solution of the secular equation. 

●  Density is determined from these orbitals and compared with density of the 
previous iteration. 

●  When SCF procedure is converged: compute the energy by using the final 
density plugged into eq (14). 

●  Cf. HF, where the energy is evaluated as the expectation value of the H 
operator acting on the HF Slater determinant. 

●  Geometry optimization? Determine whether the structure corresponds to a 
stationary point. 

●  Using the LSDA approximation means that: 

●  The exchange-correlation energy density at every position in space for the 
molecule is the same as that for the uniform electron gas having the same 
density as is found at that position. 



LSDA enjoyed early success in physics. 

The local spin-density approximation “gives bond lengths and 
thus the geometries of molecules and solids typically with an 
astonishing accuracy of ~1%.” 
                                 – W. Kohn (Nobel lecture, 1998) 
But LSDA molecular energies have systematic errors. 
     In rest of lecture: Results are given for representative or large databases 
and reasonable basis sets; details in papers.   

                                                                    MAIN-GROUP                                                
                                                                     bond            barrier 
                                                                energies         heights 
Hartree-Fock theory                                    31                 9 
Local spin-density approximation               16               18 

Mean (unsigned) errors in kcal/mol 
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Next step: add gradient dependence. 

€ 

FLSDA = F ρ r( )[ ]Local spin-density approx. 

Gradient expansion 
    

€ 

F = F LSDA 1+µs2 + higher - order⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

known: Antoniewicz & 
             Kleinman 1985 

Later slide: a second order method with this correct  

€ 

µ

SOGGA 

€ 

s ≡ constant × ∇ρ

ρ4 3



Density Gradient Corrections  
●  In a molecule the electron density is not spatially uniform. 

●  LDA has serious limitations for energies, although it gives good geometries. 

●  Improve functionals by making them depend on the extent to which the density is 
locally changing, i.e. the gradient of the density. 

●  Functionals that depend on both the density and the gradient of the density: gradient 
corrected or generalized gradient approximation (GGA) functionals. 

●  Most GGA functionals are constructed with the correction being a term added to the 
LDA functional 

●  x/c: same functional for either exchange or correlation. 

●  The dependence of the correction term is on the dimensionless reduced gradient. 

€ 

ε x /c
GGA ρ r( )[ ] = ε x /c

LSD ρ r( )[ ] +Δε x /c
∇ρ r( )
ρ 4 3 r( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

28( )
verify that this term is 

dimensionless 



Density Gradient Corrections II  
●  Most popular GGA exchange functional to date: Becke 1988 (B). (23,000+ citations 

in March 2013) 

●  Correct asymptotic behaviour at long range for the energy density and incorporates 
a single empirical parameter. 

●  Value of the parameter optimized by fitting to the exactly known exchange energies 
of six noble gas atoms (from He to Rn). 

●  Other exchange functionals similar to Becke: CAM(B), PW, FT98, mPW. 

●  Alternative GGA exchange functionals have been developed based on a rational 
function expansion of the reduced gradient. They contain no empirically optimized 
parameters: B86, P, PBE. 

●  Correlation functionals: P86 (Perdew 1986); PW91 (Perdew Wang 92). 

●  LYP correlation: (Lee, Yang, Parr 1988) does not correct the LDA expression but 
computes the full correlation energy.  

●  It contains four empirical parameters fit to helium atom. It is a correlation functional 
that provides an exact cancellation of the self-interaction error in one-electron 
systems. 



Progress:  GGAs 

€ 

FGE = FLSDA ρ( ) 1+ µs2 + higher - order][ ]

€ 

s ≡ constant × ∇ρ

ρ4 3

€ 

correct µ = 0.1235 : “Gradient expansion”

€ 

incorrect µ : “Generalized gradient approximation” ≡ GGA

€ 

FGGA = F ρ, s( )

Examples:  BLYP (1988)       
                   PBE (1996) 

€ 

µ = 0.2195

€ 

µ = 0.2743



Generalized gradient approximation shows promise. 

                                                                  Bond           Barrier 
                                                                energies         heights 

Hartree-Fock theory                                    31                 9 
Local spin-density approximation              16                18 
Correct thru 2nd order: SOGGA                  7                13 
GGA: BLYP (1988)                                   1.5                 8 

Mean (unsigned) errors in kcal/mol 

This aroused the attention of many quantum chemists. 

Becke-Lee-Yang-Parr 



Density Gradient Corrections III  
●  Taylor-function-expansion justification for the importance of the gradient. 

●  “Obvious” next step: include second derivative of the density, i.e. the Laplacian. 

●  Becke and Rousell proposed an exchange functional (BR). 

●  Proynov, Salahub, and co-workers examined the same idea for the correlation functional (Lap). 

●  Meta-GGA because they go beyond the gradient correction. 

●  Alternative Meta-GGA formalism, numerically more stable is to include in the exchange-
correlation potential a dependence on the kinetic-energy density τ: 

●  Functions ψ are the self-consistently determined KS orbitals. 

●  Some examples of MGGA functionals for exchange, correlation, or both, are B95, B98, ISM, 
τHCTH, and the Minnesota local functionals M06-L and M11-L. 

●  Cost of MGGA comparable to that for GGA. MGGA generally more accurate than GGA. 
€ 

τ r( ) =
1
2i

occ

∑ ∇ψ i r( )
2

29( )



Density Functional Theory 

Kohn-Sham (KS) Theory 
Adiabatic Connection (Hybrid Functionals) 

Video V.vii 



Adiabatic Connection Methods  
●  Posits controlling the amount of electron-electron 

interaction in a many-electron system. 

●  A switch that smoothly converts the non-interacting KS 
reference system to the real, interacting system. 

●  Thus, clearly the exchange-correlation energy can be 
computed as 

●  Where lambda describes the extent of interelectronic 
interaction: 0 (none) to 1(exact). 

€ 

Exc = Ψ λ( )Vxc Ψ λ( )
0

1

∫ dλ 30( )



Adiabatic Connection Methods II  

●  Non-interacting limit: only component of V is exchange 
(from antisymmetry of the wf). 

●  Slater determinant of the KS orbitals is the exact wave 
function for the non-interacting Hamiltonian operator. 

●  Expectation value: exact exchange for the non-interacting 
system. Compute as in a HF calculation. Use KS orbitals. 

●  Area of the rectangle defined by integration in next slide is 
thus Ex

HF 

€ 

Exc = Ψ λ( )Vxc Ψ λ( )
0

1

∫ dλ 30( )



Adiabatic Connection Methods III  

€ 

Exc = Ψ λ( )Vxc Ψ λ( )
0

1
∫ dλ

0 λ1

(0, < Ψ(0) | K | Ψ(0) >)

(1, < Ψ(0) | K | Ψ(0) >)

(1, < Ψ(1) | Vxc | Ψ(1) >)–E

Area = HF 
exchange 

energy

Area = exact 
exchange-

correlation energy

Area that we 
want



Adiabatic Connection IV  
●  Area that we want: fraction z of the area of the rectangle 

above, which itself has area 

●  We do not know z. Consider it as an empirical parameter to 
be optimized. 

●  Approximate the right endpoint with Exc computed with 
some choice of DFT, so area of top rectangle is Exc

DFT 

●  Total area under the curve. 

€ 

Ψ 1( )Vxc 1( )Ψ 1( ) −Ex
HF 31( )

€ 

Exc = Ex
HF + z Exc

DFT −Ex
HF( ) 32( )



Adiabatic Connection V  

●  In practice (32) is written using another variable a = 1–z 

●  Analysis forms the basis of the ‘adiabatic-connection 
method’ because it connects between the non-interacting 
and fully interacting states. 

€ 

Exc = Ex
HF + z Exc

DFT −Ex
HF( ) 32( )

€ 

Exc = 1− a( )Exc
DFT + aEx

HF 33( )



Adiabatic Connection VI  
●  If expectation value of the curve is a line, then z = 0.5: This 

defines the “Half and Half” method (H&H).  

●  Using LDA exchange-correlation, Becke (1993) showed 
that the H&H method has an error of 6.4 kcal/mol for 
enthalpy of formation of the G1 test set. 

●  Estimate a in a better way: perhaps include additional 
parameters if warranted. 

●  Becke (1993) developed a 3-parameter functional (B3). 

€ 

Exc
B3PW91 = 1− a( )Ex

LSDA + aEx
HF +bΔEx

B +Ec
LSDA + cEc

PW 91 34( )



Adiabatic Connection VII  

●  Where a,b,c were optimized to 0.20, 0.72, 0.81. 

●  The name B3PW91: three-parameter scheme, GGA 
exchange, correlation functionals B and PW91. 

●  Model modified to use LYP instead of PW91 by Stephens 
et al. LYP is designed to compute the full correlation energy 
and not a correction to LSDA 

€ 

Exc
B3PW91 = 1− a( )Ex

LSDA + aEx
HF +bΔEx

B +Ec
LSDA + cEc

PW 91 34( )



Adiabatic Connection VIII  
●  B3LYP model is defined as  

●  a,b,c same values as in B3PW91.  

●  Of all the modern functionals B3LYP has proven the most 
popular to date, although its reign seems to be ending. 

●  Adiabatic Connection methods incorporate both HF and 
DFT:  hybrid methods (including HF means N4 scaling). 

€ 

Exc
B3LYP = 1− a( )Ex

LSDA + aEx
HF +bΔEx

B + 1− c( )Ec
LSDA + cEc

LYP 35( )



Mix GGA with Hartree-Fock exchange. 

Kohn-Sham theory (1965) – equation for orbitals: 

€ 

T +Vne +Vee +
∂Fx
∂ρ

+
∂Fc
∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ϕi = εiϕi

Compare Hartree-Fock theory (1930): 

€ 

T +Vne +Vee +V
x
HF( )ϕi = εiϕi

Advantages:  Attractive HF exchange cancels self-interaction in Vee 

Hybrid DFT (Becke 1993): 

€ 

T +Vne +Vee +
X
100

V
x
HF + (1− X

100
)∂Fx
∂ρ

+
∂Fc
∂ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ϕi = εiϕi

(39,000+ citations in March 2013) 



Hybrid DFT was a breakthrough. 

                                                                  Bond           Barrier 
                                                                energies         heights 

Hartree-Fock theory                                    31                 9 
Local spin-density approximation              16                18 
Correct thru 2nd order: SOGGA                  7                 13 
GGA: BLYP (1988)                                   1.5                 8 
Hybrid:  B3LYP (1993)                              0.9                  4 

Mean (unsigned) errors in kcal/mol 

“chemical accuracy” for  
main-group bond energies, 
bond lengths, ... 

This was the tipping point—making DFT the accepted everyday tool. 

Becke–3 parameter–Lee-Yang-Parr 



B3LYP is enormously popular. 

Sousa, Fernandes, Ramos, JPC A (2007) 

H 



Density Functional Theory 

Wrap-up 

Video V.viii 



DFT versus MO theory  
●  DFT optimizes an electron density while WFT theory optimizes a wave function.  

●  To determine a molecular property: 

●  In DFT: how does the property depend on the density? 

●  In MO theory: need to know the quantum mechanical operator. 

●  WF has a broader utility because there are more well-characterized operators than 
there are generic property functionals of the density. 

●  Example: total energy of interelectronic repulsion: 

●  Even if we had the exact density, exact exchange-correlation energy functional not 
known: exact interelectronic repulsion cannot be computed. 

●  With the exact wave function, evaluate the expectation value for the interelectronic 
repulsion operator 

€ 

Eee = Ψ
1
riji< j

∑ Ψ 36( )



DFT versus MO theory II  
●  There is a DFT wave function. How useful is it? 

●  Slater Determinant from the KS orbitals is the exact wave function for the fictional 
non-interacting system having the same density as the real system. 

●  Properties of the KS determinants:  extremely low level of spin contamination, even 
for cases where HF behaves badly. 

●  It is by no means guaranteed that the expectation value for S2 over the KS 
determinant has any relationship at all to the corresponding expectation value over 
the exact wave function that corresponds to the KS density. 

●  Empirical observation suggests that DFT is more robust in dealing with open-shell 
systems where HF shows high spin contamination. 

●  In WFT methods, excited states can be generated as linear combinations of 
determinants derived from exciting one or more electrons from occupied to virtual 
orbitals. 

●  DFT applied to excited states requires invocation of time-dependent formalism. 



Computational Efficiency I  

●  Scaling of local DFT no worse than N3. 

●  For programs that use approximately the same routines 
and algorithms to perform a HF and DFT calculation, the 
cost of DFT is ca. double that of HF (15 atoms), but scaling 
gives DFT the win very quickly thereafter. 

●  Improvement using basis functions which are not 
contracted Gaussians. 

●  A density can be represented using an auxiliary basis set or 
numerically. 

●  Slater-type functions can be used. 



Computational Efficiency II  
●  Plane waves as basis sets in periodic infinite systems. 

●  Large number of plane waves to represent the aperiodic 
densities that are possible within the unit cells, the 
necessary integrals are simple to solve. 

●  Used in dynamics and solid-state physics. 

●  Convergence with respect to basis set is typically much 
more rapid in DFT than in WFT methods. 

●  Linear scaling DFT available. 

●  Most of above optimal with local DFT functionals. 



Limitations of KS  
●  Most applications in DFT are run within the KS formalism. 

●  It permits the kinetic energy to be computed as the 
expectation value of the kinetic-energy operator over the 
KS single determinant. 

●  No need to determine the kinetic energy as a functional of 
the density. 

●  Some systems not well described by a single Slater 
determinant. 

●  Need to introduce non-dynamical correlation but not double 
count. 



Systematic Improvability  
●  WF theory: well defined path to the exact solution (Full CI with 

infinite basis). 

●  In DFT, how to do a better calculation? 

●  All current functionals are approximate for molecular systems. 

●  No obvious way to determine which functional may be optimal for 
a particular case. 

●  Basis set convergence can be explored. 

●  Compare behavior of different functionals. 

●  Compare with a highly correlated MO treatment. 

●  Compare with experiment. 

●  Experience shows that for a large variety of systems DFT is quite 
robust. 



Older popular functionals have deficiencies: 

#1  
No functional prior to 2005 is “good” for both barrier heights  

and transition metal bond energies. 
 The best functionals for organic chemistry are bad 
for transition metal bond energies and vice versa. 

#2 
Most functionals prior to 2005 are bad for barrier heights 

and noncovalent interactions, especially π-π stacking. 

  #3    
Standard functionals are terrible for charge-transfer excitations. 

  #4 (a practical issue)    
DFT with Hartree-Fock exchange is too 

expensive for many applications. 
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best estimate: 5.3 

Amino acid residue pair with both  
electrostatics and π···π stacking 

tyrosine 

phenylalanine 

Molecular-mechanics-like add-
on dispersion terms (protocols) 
have been developed for older 
functionals (-D, -D2, -D3) 



Mean error in kcal 
B97-3            ~27  0.6  2  4  17 

   X        bonds   barriers   noncov.     TM 
best hybrid GGA 

for main group 

M06  27            0.6  2  0.8  6     new  
hybrid meta 

popular 
 hybrid GGA 

 Can (?) a functional do well for all 4 of: 
 Bond energies (main group) 
 Barriers (main group) 
 Noncovalent (S22) 

 TM:  transition metal  bond and reaction energies 

“best” local 

new local M06-L             0           0.8  4  0.8  6 

VS98  0  0.6  5   7             9 
TPSS                 0           1.0  8   3              8 

Significant savings are provided by working without HF exchange. 

Example:  C104H30N4            local 17 hours 
                                       nonlocal 250 hours 

B3LYP  20  0.9  4  4  12 



And Today? 


