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Excited Electronic States

We usually write the Schrodinger equation as
HY = EY

However, that obscures the reality that there are
infinitely many solutions to the Schrodinger equation,
so it is better to write

HIPI’) = Enlpn

Hartree-Fock theory provides us a prescription to
construct an approximate ground-state wave function
(as a single Slater determinant)

How do we build from there to construct an excited-
state wave function?



Correlated Methods. |. Configuration Interaction

A Hartree-Fock one-electron orbital (wave function) is expressed as a linear
combination of basis functions with expansion coefficients optimized according
to a variational principle (where S is the overlap matrix)

N
|IF—ES|=0 s— ¢=_ElaiCPi

The HF many-electron wave function is the Slater determinant formed by
occupation of lowest possible energy orbitals, but, the HF orbitals are not
“perfect” because of the HF approximation

So, one way to improve things would be to treat the different Slater
determinants that can be formed from any occupation of HF orbitals to
themselves be a basis set to be used to create an improved many-electron
wave function
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Configuration Interaction (Cl) Example:
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Lowest energy eigenvalue
is lower than E - ifH,, is
positive (as it is)

Higher energy eigenvalue
corresponds to excited
electronic state




Cl in a Nutshell
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The bigger the Cl matrix,
the more electron
correlation can be captured.

The Cl matrix can be made
bigger either by increasing
basis-set size (each block is
then bigger) or by adding
more highly excited
configurations (more
blocks).

The ranked eigenvalues
correspond to the electronic
state energies.

Most common compromise
is to include only single and,
to lower ground state,
double excitations (CISD)—
not size extensive.



Cl Singles (CIS)

dense

There are m x n singly
excited configurations
where m and n are the
number of occupied and
virtual orbitals, respectively.

Diagonalization gives
excited-state energies and
eigenvectors containing
weights of singly excited
determinants in the pure
excited state

Quality of excited-state
wave functions about that of
HF for ground state.

Efficient, permits geometry

optimization; semiempirical

levels (INDO/S) optimized
for CIS method.



Cl Singles (CIS) — Acrolein Example

Excited State 1: Singlet-A"
14 -> 16 0.62380
14 -> 17 0.30035

Excited State 2: Singlet-A'
15 -> 16 0.68354

Excited State 3: Singlet-A"
11 ->16 -0.15957
12 -> 16 0.55680
14 -> 16 -0.19752
14 -> 17 0.29331

Excited State 4: Singlet-A"
9->17 0.19146
10 -> 16 0.12993
11 ->16 0.56876
12 -> 16 0.26026
12 -> 17 -0.11839
14 -> 17 -0.12343

Eigenvectors CIS/6-31G(d) and INDO/S

4.8437 eV 255.97 nm f=0.0002
3.0329 408.79
3.73

7.6062 eV 163.01 nm f=0.7397
6.0794 203.94
6.41

9.1827 eV 135.02 nm f=0.0004
6.6993 185.07

9.7329 eV 127.39 nm f=0.0007

O
H
LUMO+1: x,”
LUMO: m3*
HOMO: m,
Expt
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complete active space

Cl: Theme et Variation

frozen HF

. : If one chooses not to include all excited
virtual orbitals

configurations (full Cl) perhaps one should

enforced empty reoptimize the basis-function coefficients of
the most important orbitals instead of using
no more than :
n excitations <—1 their HF values
in permitted

Maybe more excitations into

restricted Iower-energy orbitals is a
active better option than any
space excitations into higher-

energy orbitals

all possible
occupation
shemes allowed

no more than The general term for this class of

n excitations —— calculations is multiconfiguration self-
out permitted consistent field (MCSCF)—special
cases are CASSCF and RASSCF—
enforced doubly CASPT2 adds accuracy
occupied

Orbital optimization can be for an average
Jrozen HF of state energies so as not to bias the
occupied orbitals orbitals to any one state



Excited Electronic States

Perturbation Theory and TD-DFT
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Time-Dependent Perturbation Theory

Consider the time-dependent Schrédinger equation

. where @, is an
_ ho¥ — HW with eigenfunctions W; = e‘(’Ej” h)q) . eigenfunction of the time-
i ot / /" independent Schrédinger

equation
Perturb the Hamiltonian with a radiation field

H = H" + ¢yrsin(2mve)

The wave function evolves in the presence of the perturbation and may be
expressed as a linear combination of the complete set of solutions to H

W - Ecke—(iEkt/h)q)k
k

Termination of the radiation field will cause the wave function to collapse (upon
sampling) to a stationary state with probability |c,|>. The c, will evolve according to

h o (s (s
A (lEkt/h)(I)k =[Ho+eorsin(27wt)]20ke (iEx1 /1)
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iIme-Dependent Perturbation Theory (cont.)

—(iExt/ h)

h o ' '
(lEk”h)cpk = [HO + eorsm(ZTWt)]E ce Dy

ial‘k k

Taking the time derivative on the left and expanding on the right

_hg o (i), S ¢ Eye VB g
[ Ot k
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Which simplifies to k k
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Left multiplication by state of interest and integration yields

dc, —(iE
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iIme-Dependent Perturbation Theory (cont.)

dc, —(iE
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Evaluate Kronecker delta, rearrange, and assume perturbation is small, so ground
State can be used for right-hand-side coefficients

Ym _ —%eo sin(27tvt)e /(En=Fo )1 /1]

Py (D,,Ir|Dg )

Integrating over time of perturbation
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where E
W = 27V W0 = .




iIme-Dependent Perturbation Theory (cont.)

interaction with hjgh frequengy field)

Adding Franck-Cpndon overlap for vibrational WZVE rGtions4assuming little

1

Cm,n(T) =

EZZ

Qualitative points:
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Time-Dependent Density Functional Theory

A similar mathematical formalism applied to density functional theory shows that
excitation energies can be determined as poles of the polarizability matrix

] 5 .
<O(> =3 ‘<q)m ‘r‘(I)O>‘ " K(I)m ‘r‘(l)0>‘
v m>0[ Wyo T W B W0 —W
E - E
W =27V W0 = mTO

Qualitative points:

TD DFT tends to be more accurate than CIS but this is sensitive to choice of
functional and certain special situations

Charge-transfer transitions are particularly problematic

No wave function is created, but eigenvectors analogous to those predicted by CIS
are provided



Cl Singlek TGtoAerafaolemagmple

Excited State 1: Singlet-A" 3.3823% eV 333.93 nm f=0.0002 0
18 -> 16 0.62380
18 -> 17 0.30835

Excited State 2: Singlet-A' 8.8062 eV 1683.66 nm f=0.338%
16->16  0.66330 H
14 -> 17 0.12143

Excited State 3: Singlet-A" 9.1827 eV 135.02 nm f=0.0004

Excifee>State 3:0.398f1ét-A" 7.2723 eV 170.49 nm f=0.0004
13-> 16 0.58030

18->16  -0.1978@ LUMO+1: x,*

186->17  0.88306 S

LUMO: m,4

Excited State 4: Singlet-A" 9.8629 eV 138.89 nm =0.0008 HOMQ: m,
B->16 Ok ge s :

16516  .0.18628 HODAE-1: ;e

11 ->16 0.56876
12 -> 16 0.26026
12 -> 17 -0.11839
14 -> 17 -0.12343

Eigenvectors EBH6/8433@[d)  Recall expt 3.73/6.41 eV



Excited Electronic States

Conical Intersections and Dynamics
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Avoided Crossings and Conical Intersections

H11_E H12

| H— ES | = ( m—— H, H,-E

(Hll + sz) = \/(Hn ~ H22)2 +4H,,
2

E=

Can two states have the
same energy E?

Requires H,;, =H,, and H,, =0

This restricts two degrees of freedom and is thus not possible in a diatomic
(avoided crossing rule) but it is possible for larger molecules (conical
intersection) and indeed multiple electronic states can be degenerate

provided sufficient numbers of degrees of freedom are available to satisfy the
necessary constraints.



Conical Intersection Example (NO,)

Note that 3 atoms
leaves one final
degree of freedom,
so the Cl is not a
point, but a
“‘seam” (that has a
minimum)

LASER EX

120
bong angle Gfd"v’Qrees} 100 S

Professor Carlo Petrongolo



Conical Intersection Example 1D Projection

C .A hy —#~

\.._.‘”

g M.
-,

Conical Intersection

Avoided Crossing

e

—p— .

= hv

-

St

Sz

Cls permit
radiationless
transitions from one
State to another.
Kasha’s rule says
that such internal
conversions among
excited states will be
very fast until one
reaches S, (the first
State above the
ground state S;)



Probability of Surface Hopping—Landau-Zener Model

P G T )

dU;
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dQ
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What If Two States Have Different Spin Multiplicity?

* In non-relativistic quantum mechanics, transitions between two states

of different spin multiplicity are strictly forbidden (although it is mildly
paradoxical to refer to spin at all if one is imagining non-relativistic QM)

 However, a relativistic Hamiltonian includes operators that affect spin,
including the spin-orbit operator, the spin-spin dipole operator (coupling
two electrons) and the hyperfine operator (coupling electronic and
nuclear spins)

« Spin-orbit coupling increases with the 4th power of the atomic number,
so with heavier nuclei, this process can be very efficient




Nondynamical Photophysical Processes for a Single Geometry

Jablonski Energy Diagram

Excitation
( A?gf:orptlon) Esxclted Singlet States ——
2 = rationa
10 2onds 32% o ]-Energy States
-
Internal , < { Internal
Conversion | 5 ') Conversion
Vibrational SSEE Delayed
Relaxation o1 ;b . Fluowence
(10141011 Sec) Ot b b i 5 Excited
S . ——3 Triplet
U 1 State
Flugresc_,ence Cbergvat o (T,
<107 ntersystem
(107- 107 Sec) Cms‘émg
Intersystem
Crossing Non-Radiative
PN Relaxation
(Triplet)
Quenching
) st A | Phos hor%scence
Non-Radiative § 3 (107 107 Sec)
Relaxation ~0 1= .
A 0 Figure 1

Ground State

Dynamics adds
Ssubstantial
complication by
changing relative
State energies.
Solvation
compounds the
difficulty by changing
State energies in a
time-dependent
fashion as non-
equilibrium solvation
decays to equilibrium
Solvation



Conti, |.; Marchioni, F.; Credi, A.; Orlandi, G.; Rosini, G.; Garavelli, M. JACS 2007, 129, 3198

CNNC, 180° 179°  178° 177° 176° 158°  153° 151° 130° 9°  93°
CNN 151° 109°  111° 114° 129° 112° 126° 115° 118° 127°  117°
NNC, 152° 111 112° 113° 129° 109° 172 117° 118° 125°  140°
NN 1.22 1.35 138 136 1.25 1.35 1.28 1.33 1.32 1.27  1.27
CN 1.33 1.36 138 132 136 1.31 1.30 1.34 1.3 1.39 140
NC, 1.34 129 135 133 1.36 1.32 1.24  1.31 1.3 1.38 1.35
I | 2-Clg, | E-MinS, 3-Cly,s, | 4-Clgy, 8-Clgys, | ECI,,,
EClyy  1-Clgy | FHMg | MMy | ECl,, | T-Clas | MIN-T; |
L 1 A 1 I L L
S¢ = S,/S, crossing seam «weeeeeens < >
1204 gi 3 S,/S, crossing seam [ ] ,N=N/C’
S; S,/S, crossing seam — — — - C
100 S, ¢ )
g 80
=
3 | | -
8“7 R ! > > > 5 5
p o> > > > > > > > > >
< 40 '

i

0-s, PLANAR RELAXATION TORSION

1 1 I L) I 1 I I 1 I
E-MinS, E-TSg, | 3-Clg 2-HM,, 4-Clg,, | 6-Clgy, E-TSg,

I EMinS, | 1-Clg,  2-Clgy 4-HM,, 5-Clgs | E-CL,, | E-Cl,,,,
(CNNC, 180°  179° 179° 177° 161° 149°  132°  129° 94°
CONN 1140 114° 114° 110° 116° 113°  163°  125° 142°
NNC, 115° 1150 113 109° 116° 110°  125°  130° 117°
NN 125 131 136 1.36 1.32 134 126 126 1.26
CN 142 137 132 1.31 1.32 131 126 137 1.36
NC, 142 133 133 1.32 1.33 132 134 138 1.41

Figure 4. E-CPD computed reaction paths upon nr* and 7r* excitations. Blue arrows show the nr* state (solid diamonds) MEP from the Franck—Condon
region to the low-energy S1/Sg crossing point (—N=N-— torsions are mainly involved); red arrows show the MEP from the bright 7777 state (solid asterisks).
The higher double-excitation state (solid squares) suddenly crosses the 7T state and drives the relaxation of the excited molecule. The dotted red points
zone represents the extended S»/S; crossing seam. The red dotted line is the bright 77T* state scaled to match the experimental absorption value. All the
energy profiles have been scaled to match CASPT2 values (Table 2).



Dynamics Occurs in All Degrees of Freedom

S,/S; CROSSING SEAM ACCESS

A
S
S
=
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Cirsensnnpannnnans S.,/S CROSS[NGSEAM
""" S A T s, MEP
"""""""""""""""""" - »-+ hap -—»-—»
S2 1-HM, - 2:HMg, - 3-HMg; .~ 4-H
%
" Ltorsion
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S
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@The crossing seam can be accessed by vibrations (e.g.,

C

L '/
/N—_N
C

symmetric CNN bending modes) orthogonal to the MEP.




(b) PHOTOISOMERIZATION QUANTUM YIELDS
TRANS-SIDE

(2

C
N/

,

torsion CNNC=180°

4 Bigger arrows show the most favorite paths. The red color identifies tt* decay paths, while the blue color identifies nt* decay paths.



Excited Electronic States

Solvatochromism
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Solvatochromism of Dye E;{30 (S, — S;)

(
]
(T
(]
ROy
Solvent Color Aoy, NM
anisole yellow 769
acetone green 677
2-pentanol blue 608
ethanol violet 550
methanol red 915
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Solvatochromism Redux
Equilibrium vs. Nonequilibrium Solvation

\\—/ solution
AG*sol \ /

AEgo = AEg,s + AG¥g4) — AGIGISsoI

AEgo = hvgg

N

\

TN

gas

k
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solvatochromic
effect

AEgas = thas

(Stokes shift)




QM Self-Consistent Reaction Field (SCRF)
W minimizes Hgyas + Vin + Geost — equilibrium quantity
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QM "SC"RF for Excited State




Ground State Solvation Free Energy
Polarization Component

Generalized Born Approach

GS 1/ 1 &S Gs GS
AGp —-—\1-—> EQk dk' Y kk'
i k'

¢ 1s the bulk dielectric constant of the medium

g is a partial atomic charge (from W>*")



Excited State Polarization Free Energy

atoms

AGp = - 1(1 - iz) Qa1 (electronic SCRF)
2 no/oe
1 1 atoms
_( — - _> E q;: q](;’,sy K (elec/orient inter)
ntot ik
1/{ 1 1 atoms .
+5(_2— E) qusqgsy o (orient cost)
n kk’
L (L ST o) s
+— 1_—) —_——— — ) / r (Cross term
2\ 2 \nz 8/ EQk 9k |9k’ Y kk ( )

Li et al. Int. J. Quantum Chem. 2000, 77, 264
Marenich et al. Chem. Sci. 2011, 2, 2143



Excited State SCRF

CI Singles formalism

M
* GS GS i
v = Ecmq)m’ Oy =¥, Dy =W 1\;
m=1

form CI Matrix

Hy = (@, [H° +H_

D,)
where the one-electron operator is defined

%k N %k
H, = 3 Slou)[-0uVi, ko 0)

i=1 nv
and

% ( 1 * (1 1 GS
Vi, =_\1—n_2>2%¥kul_\n_2—;) z qa Yk,



Solvatochromism of Acetone n—x*

Av,cm™
Solvent € n VEM42 Experiment
(gas phase) (1.0) (1.0) (36,165)
Heptane 191 1.3878 241 195
Cyclohexane 2.04 1.4266 -264 440
CCl, 2.23 1.4601 -294 440
Diethyl Ether 4.24 1.3526 -530 65
Chloroform 4.71 1.4459 -515 -125
Ethanol 24 .85 1.3611 -736 —680
Methanol 32.63 1.3288 -769 -880
Acetonitrile 37.5 1.3442 -763 -335
Water 78.3 1.3330 -787 -1670

Not so exciting...



Other Solvation Components!

1) Dispersion (largely responsible for red shifts in non-polar solvents)

n -1
Avp=D——
b 2n? +1

Optimized value for D = 3448 cm™

2) Hydrogen bonding (explicit solvation effect)

AVH = Hao

Optimized value for H=-1614 cm™



Solvatochromism of Acetone n—mx*

Av,cm™
Solvent € n o EPDH Experiment
(gas phase) (1.0) (1.0) (0.0) (36,165)
Heptane 191 1.3878 0.0 417 195
Cyclohexane 2.04 1.4266 0.0 440 440
CCl, 2.23 1.4601 0.0 447 440
Diethyl Ether 4.24 1.3526 0.0 84 65
Chloroform 4.71 1.4459 0.15 =31 -125
Ethanol 24.85 1.3611 0.37 -708 —680
Methanol 32.63 1.3288 043 —880 —880
Acetonitrile 37.5 1.3442 0.07 =273 =335
Water 78.3 1.3330 0.82 —1522 -1670

Mean unsigned error 65 cm™



