
Kinetics and Dynamics 

Transition-state Theory (TST) 

Video VII.viii 



Transition-state Theory and Kinetics 

Elementary Unimolecular Reactions 
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kB is Boltzmann’s constant, h is Planck’s constant, T is temperature, Q is 
the partition function, and U0 is the internal energy at 0 K (E + ZPVE) 

standard-state again… 
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TST, Eyring, and Arrhenius Expressions 
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Arrhenius 
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What is a Block CoPolymer?
Situation:

Consequence:
If you want to design new materials that incorporate properties of both 
polymers on small length scales, you must keep the polymers from phase 
separating by covalently attaching chains of one type to chains of the other 
type, e.g., AAAAAAAAAAAAA–BBBBBBBBBBBBBBB

Uses
Thermoplastic elastomers (e.g., running shoe soles)
Pressure sensitive adhesives (Post-It™ Notes)
Viscosity modifiers for oils
Compatibilizers (the polymer equivalent of a soap)

Mixtures of two polymers—even seemingly very similar polymers—nearly 
always phase separate rather than "alloy"

Challenge:
How can you synthesize a well-defined BCP (e.g., having low polydispersity)?
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One Technique for Making Fluorinated BCPs
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If One Fluorine is Good... (E. I. DuPont)

Are there concerns?



Carbene Rearrangements in Hydrocarbons
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Kinetics 101
Carbene additions typically proceed without an activation barrier. The rates of 
barrierless reactions in solution are typically "diffusion controlled". Over a 
reasonable range of viscosities, an appropriate rate expression is:

Ratebi (M sec–1) ≈ 1010 • [A] [B]

Unimolecular rearrangements typically follow a particularly simple rate law:

Rateuni (M sec–1) ≈ 1014 • [A] • exp(–ΔG‡ / RT)

We would like the ratio of bimolecular reaction to unimolecular rearrangement
to be at least a factor of 100, i.e.,

Ratebi (M sec–1)

Rateuni (M sec–1)
= 100 = 10–4 • [B] • exp(ΔG‡ / RT)

Given a realistic maximum [B] (molar concentration of double bonds) of about
1 M, this implies the minimum activation energy for unimolecular rearrangement 
cannot be lower than 12.9 kcal/mol at 200 °C



Carbene Rearrangements in Fluorocarbons
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ΔG‡ = 25.9 kcal/mol

1,3-F shift

ΔG‡ = 36.4 kcal/mol

1,2-CF3 shift

ΔG‡ = 18.5 kcal/mol

Because fluorine holds electrons more "tightly" than hydrogen, it is much
harder to insert into C–F bonds than into C–H bonds. Interestingly, the

accessibility of C–C bonds is relatively unperturbed by H vs. F.
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Feasibility Study on Epoxide Cracking

Kinetics 102:  Left path preferred by about 
5,000,000 to 1 at 200 °C
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Feasibility Study on Epoxide Cracking 2

Kinetics 103:  Half-life for a unimolecular process (like cracking) is 
roughly

C
O
F

ΔG‡ = 52.1
kcal/mol

‡

+

t1/2 (sec) ≈ ln2 • 10–14 • exp(ΔG‡ / RT)

For above reaction at 200 °C, 50% cracking takes 317 years . . .
(4.8 hours for previous example via its preferred path)

Cramer and Hillmyer J. Org. Chem. 1999, 64, 4850 



Kinetics and Dynamics 

Kinetic Isotope Effects 

Video VII.ix 



Kinetic Isotope Effects 
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Can be very useful for validating quality of 
computed transition-state structures  



Protein Prenylation 

Farnesylation of ras protein key to carcinogenesis 

cf = 0.057 for PFT + GPP 

1° 13C KIE = 1.039 ± 0.003 
2° 2H KIE = 1.068 ± 0.003 

What is structure of 
transition state? 
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Choice of Theoretical Model (Validation) 
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Modeling Prenylation 
mPW1N applied to GPP / ethanethiolate (aq) 

1° 13C KIE = 1.039 ± 0.003 
2° 2H KIE = 1.068 ± 0.003 
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Controlling Making and Breaking Bonds 
1° 13C KIE = 1.039 ± 0.003 
2° 1H KIE = 1.068 ± 0.003 
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Active Site Influence on TS Structure 

 
 

 
 

 
  

 
 

 

Uncat. Cat. 

Looser — more ionic 
Consistent with rate deceleration by electron-withdrawing groups 



Kinetics and Dynamics 

Tunneling, Variational Transition-state 
Theory (VTST), and Marcus Theory 

Video VII.x 



Quantum Effects on the Rate Constant 
Reaction Probability Through a Parabolic Barrier 
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Tunneling and Eyring Plot Curvature 
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Tunneling in a Nutshell 
•  Typically only significant for reaction coordinates 

having large proton, H atom, or hydride motion 
•  Typically less significant at higher temperatures (but 

demonstrated to be important in many biological 
systems at their temperatures!) 

•  Accounting for tunneling is, frankly, hard, although 
the Skodje-Truhlar approximation is fairly 
straightforward 

•  Beware of experimental data that may be interpreted 
incorrectly because of a failure to consider tunneling! 



Skodje-Truhlar 



Methane Metathesis in Lutetiocene (kcal/mol) 
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Sherer and Cramer  
Organometallics 2003, 22, 1682	




Fooled by Tunneling 
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Variational Transition-state Theory 
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Electron Transfer—A Very Hard KIE Problem 
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THANKS!! 


