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Constructing a 1-Electron Wave Function

The units of the wave function are such that its square is electron per
volume. As electrons are quantum particles with non-point distributions,
sometimes we say “density” or “probability density” instead of electron per
volume (especially when there is more than one electron, since they are
indistinguishable as quantum patrticles)

For instance, a valid wave function in cartesian coordinates for one electron
might be:

5/2
q)(x,y,z;Z) = \/EZ (6—Z\/x2 +y2 +Z2)ye—Z X2 4y2 472 /3

81Vm
. AN J |\ J
M Y Y
normalization radial phase cartesian ensures
factor factor directionality square

(if any) integrability



Constructing a 1-Electron Wave Function

A valid wave function in cartesian coordinates for one electron might be:
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This permits us to compute the
probability of finding the electron

| X< X< xz- within a particular cartesian volume
element (normalization factors are
Plyysy=sy,|= f f (I) dx dy dz  determined by requiring that P = 1
FEEi when all limits are infinite, i.e.,

integration over all space)



Constructing a 1-Electron Wave Function

To permit additional flexibility, we may take our wave function to be a linear

combination of some set of common “basis” functions, e.q., atomic orbitals
(LCAO). Thus
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Constructing a 1-Electron Wave Function

To optimize the coefficients in our LCAO expansion, we use the variational
principle, which says that
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which is minimized by one root E of the “secular equation” (the
other roots are excited states)—each value of E that satisfies the
secular equation determines all of the a, values and thus the shape

of the molecular orbital wave function (MO)
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What Are These Integrals H?

The electronic Hamiltonian includes kinetic enerqy, nuclear attraction, and, if
there is more than one electron, electron-electron repulsion
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The final term is problematic. Solving for all electrons at once is a
many-body problem that has not been solved even for classical
particles. An approximation is to ignore the correlated motion of the
electrons, and treat each electron as independent, but even then, if
each MO depends on all of the other MOs, how can we determine
even one of them? The Hartree-Fock approach accomplishes this
for a many-electron wave function expressed as an
antisymmetrized product of one-electron MQOs (a so-called Slater

determinant)
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Cement Your Understanding
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Try to write out, neatly and carefully, in full
mathematical notation, every generic integral in the
Fock matrix for Slater-type orbital basis functions with
all functions and operators expressed in Cartesian
coordinates (which is how they are most typically
evaluated in actual practice)
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Consider only first- and second-row atoms; consider a minimal basis set
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Things to consider in a semiempirical model:

1) What shall | choose for a basis set?

2) What shall | do for overlap integrals (in the secular determinant)?
3) What shall | do for Fock matrix elements?

4) As part of (3), what shall | do about electron repulsion integrals?

Essentially all semiempirical models adopt a “minimal” basis set. The AO basis
functions cover only the valence s, p, d, and f orbitals (p, d, and f only as needed),
one function per orbital (so, 1's, 3 p, 5d, and 7f orbitals). The basis functions

themselves are taken to be Slater orbitals. ),Hl,z
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General choice for overlap integrals, Syt

The overlap between any two STOs can be computed analytically (i.e., it is a simple
arithmetic function of position and values of C, n, /, and m). Overlap integrals find
use in computing some Fock matrix elements.

However, when forming the secular determinant, the simplification S, = 9,,, is
adopted.
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There are 3 types of Fock matrix integrals, Fo

A Fock matrix element can be “diagonal” (i.e., w =), or not. When the matrix
element is off-diagonal, it can be monatomic (i.e., w # v, but wand v are on the
same atom), or it can be diatomic (the only remaining possibility)

As every Fock matrix element includes ERIs, first let’s consider the ERIs (we’ll get to
one-electron integrals later)



COMPLETE NEGLECT OF DIFFERENTIAL OVERLAP
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Reducing the N* scaling problem: ]

CNDO: (;w I 7\.0) = 6W67\0(uu | Mx) only ERIs not equal to zero are Coulomb
integrals between 2 AO basis functions, which
may or may not be on the same atom

(u IAN) = ¥ A v is a number or function that depends only on
the atoms A and B on which wand A are
found, respectively.

Y aa = [Py — EAp interaction between electrons on same atom
taken as difference between ionization
potential and electron affinity

P one extra e-e repulsion
Y AR = YAA T Y BB on atom M
2 +7AB(Y AA +VBB) y

M + M’ M® + MP

function above has proper limits at r,; =0
(since then A must be B, the same atom)
and at r,; very large (just 1/r,;, which is
Coulomb’s law in atomic units)



COMPLETE NEGLECT OF DIFFERENTIAL OVERLAP

Reducing the N* scaling problem:
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only ERIs not equal to zero are Coulomb
integrals between 2 AO basis functions, which
may or may not be on the same atom

v is @ number or function that depends only on
the atoms A and B on which wand A are
found, respectively.

no distinction in 2-electron repulsions:
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COMPLETE NEGLECT OF DIFFERENTIAL OVERLAP

(uv|20) = [, (D@, (1) %%(2)%(2) drdr,

Reducing the N* scaling problem: "
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INTERMEDIATE NEGLECT OF DIFFERENTIAL OVERLAP

Reducing the N* scaling problem:

INDO:  (uv120) = 8,585 (un I A1)
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still taken to be true unless u and A are on the
same atom

For an atom with only s and p valence
functions, 5 unique integrals are kept (they are
simply values, in energy units, that can be
determined from spectroscopy or taken as
free parameters). Note that p” refersto a p
orbital different from a reference one, e.g.,
(pp | p’p" ) might be (p,p, | PP, ), i.e., the
through-space repulsive interaction between
electrons in two perpendicular p orbitals

This extra flexibility in the atomic ERIs tends to improve relative energies
for electronic states that differ by occupation of orbitals on single-centers.
That is, for instance, excited states that are well characterized as one-
electron local excitations. INDO still finds substantial use for spectroscopy.



NEGLECT OF DIATOMIC DIFFERENTIAL OVERLAP

Reducing the N* scaling problem:
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NDDO: (uv I 7»0) =0, x 85 y (MV | ko) so, the only integrals that survive are those

(ss|ss

(ss‘ pp

(

)
)
(pp\pp)
)
)

(sp‘sp

I
NQQQQ

where both u and v are on the same atom,
and A and o are on the same atom, but
neither the two atoms need to be the same,
nor do the two functions on the individual
atoms need to be the same. For monatomic
ERIs, the INDO-like values are retained. For
diatomic ERIs, there are 100 possible integrals
for s and p basis functions (try and verify
that...)

The diatomic integrals are not easily evaluated for Slater type orbitals.
Instead, NDDO methods model the integrals as classical multipole
interactions between the two atoms. Whether the multipole is a point
charge (ss), a dipole (sp), or a quadrupole (pp or pp’) depends on the
nature of the orbitals, and the orientation of the higher multipoles does,
too. The magnitudes of the dipoles and quadrupoles depend on the
exponents of the Slater basis functions.



ONE-ELECTRON INTEGRALS
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where U is a parameter that should be nearly equal to the ionization potential of
an electron in atomic orbital uw and the attraction to a nucleus at the positions of
other atoms k is Z, times the repulsion with an electron in an s orbital on the same
atom.



ONE-ELECTRON INTEGRALS
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where the first two terms are zero for s and p orbitals by symmetry considerations
and the attraction to a nucleus at the positions of other atoms k is Z, times the
repulsion with an electron in an s orbital on the same atom.



ONE-ELECTRON INTEGRALS

1 nuclei
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Consider off-diagonal term, u # v, each on a different atom
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where {3 is our old friend from Huickel theory, the resonance integral (a numerical

parameter) and S is the overlap matrix computed from the Slater type orbitals.
Note that the 3 values depend on both the atomic number and the orbital (i.e.,
carbon has a different 3 value for an s orbital than for a p orbital)

What would a table of parameters look like for an NDDO model?
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Big Personalities

John Pople Michael Dewar



FINAL MOLECULAR-MECHANICS-LIKE TOUCHUP

First adopted in MNDO, later in AM1 and PM3, etc.
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where the first term says that nuclei repel each other proportional to the degree
that their s electrons repel one another, but the following sum effectively creates
gaussian shaped ripples, positive or negative, in the potential energy surface
surrounding the atoms. Such an approach permits a fine tuning of atomic
separations that must be considered rather ad hoc, but not necessarily
inconsistent with semiempirical principles. (Later extended by Jorgensen and co-
workers using “Pairwise Distance Directed Gaussians” (PDDG) for MNDO and
PM3.)



Chemical Intuition vs Maths
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Errors in Computed Heats of Formation (kcal/mol)

Elements Subset MNDO AM1 PM3 MNDO/d
(Number) (Number)

Lighter (181) 7.35 5.80 4.71
CH (58) 5.81 4.89 3.79
CHN (32) 6.24 4.65 5.02
CHNO (48) 7.12 6.79 4.04
CHNOF (43) 10.50 6.76 6.45
radicals (14) 93 8.0 74

Heavier (488) 292 153 10.0 4.9
Al (29) 22.1 104 16 .4 4.9
Si (84) 12.0 8.5 6.0 6.3
P 43) 38.7 14.5 17.1 7.6
S (99) 48 4 103 7.5 5.6
Cl (85) 394 29.1 104 3.9
Br (51) 16.2 152 8.1 34
I(42) 254 21.7 134 4.0
Hg (37) 13.7 9.0 7.7 2.2
Normal (421) 11.0 8.0 8.4 4.8
Hypervalent 143.2 61.3 199 54
(67)

Cations (34) 9.55 7.62 9.46

Anions (13) 11.36 7.11 8.81



Parameter

MODERN USAGE? SPECIFIC RANGE PARAMETERS

AM1

—52.03
—39.61
—15.72

—7.72

—97.83
—78.26
—29.27
—29.27

AM1-SRP

—49.85
—40.34
—16.91

-9.19

-99.18
—80.76
—29.00
—29.25

H -H
\ @)
_ |
H/|C O\H + H ,C\. H2
H H,0 H
Source AE,,, D (C—H) Dg(H-H)
AM1 —28.0 814
AM1-SRP —-4.9 104 .4
Expt. 5.1 104.4




