Simulations with MM Force Fields

Monte Carlo (MC) and Molecular Dynamics (MD) Video II.vi

Some slides taken with permission from

Howard R. Mayne
Department of Chemistry
University of New Hampshire

We often draw in 1D, but we're hiding a lot.

Walking on the Surface

The lowest point on The Energy Landscape is the most stable point (Global Minimum)

At Absolute Zero a system in thermal equilibrium must be at its global minimum

Increasing the efficiency of searching for the global minimum is an active area of research

"Finding a Needle in a Haystack"

Some Common Search Strategies (Optimization Techniques)

1. Systematically search all coordinates.

IMPOSSIBLE! $\sim N^{100}$ (or so).

2. Dynamics + "Quench"

Roam over the surface, occasionally sliding down to the nearest local minimum.

3. Simulated Annealing

Heat the system up, and cool very slowly.

4. Evolutionary/Genetic Algorithms

Allow "good" geometries to survive and to share properties, but "bad" ones to die.

#2 and #3 require a discussion of Molecular Dynamics and Metropolis Monte Carlo Techniques

Phase Space — 1D Harmonic Oscillator

No two trajectories in phase space can cross. A system is either periodic or it samples all of phase space in an ergodic fashion.

Phase point defined as

 $\mathbf{r} = (q,p)$ generalized for N particles as

 $\mathbf{r} = (q_{1x}, q_{1y}, q_{1z}, p_{1x}, p_{1y}, p_{1z}, ..., q_{Nx}, q_{Ny}, q_{Nz}, p_{Nx}, p_{Ny}, p_{Nz})$

Are you following the true phase-space trajectory sufficiently accurately? Small steps are necessary (about 0.5 fs not unusual)

Simulations with MM Force Fields

Monte Carlo (MC) and Molecular Dynamics (MD) Video II.vii Are you following the true phase-space trajectory sufficiently accurately? Small steps are necessary (about 0.5 fs not unusual)

Integrating over Phase Space

$$\langle \Xi \rangle = \frac{\int_{PS} \Xi(\mathbf{r}) P(\mathbf{r}) d\mathbf{r}}{\int_{PS} P(\mathbf{r}) d\mathbf{r}}$$

Expectation values are dictated by the relative probabilities of being in different regions of phase space

$$P(\mathbf{r}) = e^{-E(\mathbf{q},\mathbf{p})/k_{\mathrm{B}}T}$$
 $Q = \int_{\mathrm{PS}} P(\mathbf{r}) d\mathbf{r}$

Key point: Don't waste time evaluating $\Xi(r)$ if P(r) is zero.

Difficulty: Phase space is 6*N*-dimensional. If you only want to sample all possible combinations of either positive or negative values for each coordinate (i.e., hit every "hyperoctant" in phase space *once*), you need 2^{6*N*} points!

Metropolis Monte Carlo:

For simplicity we work here with a property independent of momentum, thereby reducing the computational overhead by a factor of 2

Generates a thermal population of geometries

such that $n(r_1)/n(r_2) = \exp(-[U(r_1)-U(r_2)]/k_BT)$

Method.

- 1. Propose "move" $r_1 \rightarrow r_2$
- 2. "Accept" move if (i) $U(\mathbf{r_1}) \leq U(\mathbf{r_2})$

Boltzmann Distribution

(ii) exp $[-(U(\mathbf{r_1})-U(\mathbf{r_2}))/k_BT] > \text{random } \# \epsilon[0,1]$

3. Else "reject"

Simulated Annealing

Start at high temperature, then decrease temperature slowly with time.

Molecular Dynamics (MD)

Solve classical equations of motion from

some initial geometry and velocity

$$\mathbf{r}(0) \rightarrow \mathbf{r}(t) ; \mathbf{v}(0) \rightarrow \mathbf{v}(t)$$

Newton's Law $\mathbf{F} = \mathbf{ma} = -d\mathbf{U}(\mathbf{r})/d\mathbf{r}$

Need $\mathbf{r}(0)$, $\mathbf{v}(0)$, $\mathbf{U}(\mathbf{r})$, $\mathbf{d}\mathbf{U}/\mathbf{d}\mathbf{r}$ $\mathbf{r}(\mathbf{t}=\mathbf{0})$ $\mathbf{v}(0)$ from temperature (randomly distributed)

High Energy Dynamics to cross barriers freely

Simulations with MM Force Fields

Monte Carlo (MC) and Molecular Dynamics (MD) Video II.viii

Integrating over Phase Space

$$\langle \Xi \rangle = \frac{\int_{PS} \Xi(\mathbf{r}) P(\mathbf{r}) d\mathbf{r}}{\int_{PS} P(\mathbf{r}) d\mathbf{r}}$$

Expectation values are dictated by the relative probabilities of being in different regions of phase space

$$P(\mathbf{r}) = e^{-E(\mathbf{q},\mathbf{p})/k_{\mathrm{B}}T}$$
 $Q = \int_{\mathrm{PS}} P(\mathbf{r}) d\mathbf{r}$

Key point: Don't waste time evaluating $\Xi(r)$ if P(r) is zero.

Difficulty: Phase space is 6*N*-dimensional. If you only want to sample all possible combinations of either positive or negative values for each coordinate (i.e., hit every "hyperoctant" in phase space *once*), you need 2^{6*N*} points!

Nota bene: the standard deviation in an expectation value is not (necessarily) an error, but may instead be a manifestation of dynamical variation

Molecular Dynamics

Simulation yields **r**(t), **v**(t), U(**r**(t)), correlation functions

- → Dynamic structure (e.g. does reaction happen?)
- Transport properties(D, viscosity, etc)

Molecular Dynamics

Using "tricks" can be made to run at:

- constant T,
- constant P, or combinations thereof.

(Keywords: Statistical mechanical ensemble; heat bath; thermostats; pistons)

"Tricks" in Simulations, continued...

Adding more solvent molecules increases computational effort!

Periodic Boundary Conditions

Make the system thinks it's larger than it really is.

Problem with MD and Monte Carlo "Quasi-Ergodic" Sampling Problem

What method to use?

So, What Method To Use?

So, What Method To Use?

So, What Method To Use?

Integrating over Phase Space

$$\langle \Xi \rangle = \frac{\int_{PS} \Xi(\mathbf{r}) P(\mathbf{r}) d\mathbf{r}}{\int_{PS} P(\mathbf{r}) d\mathbf{r}}$$

Expectation values are dictated by the relative probabilities of being in different regions of phase space

$$P(\mathbf{r}) = e^{-E(\mathbf{q},\mathbf{p})/k_{\mathrm{B}}T}$$
 $Q = \int_{\mathrm{PS}} P(\mathbf{r}) d\mathbf{r}$

Key point: Don't waste time evaluating $\Xi(r)$ if P(r) is zero.

$$\left(\frac{\mathbf{MC/MD}}{\mathbf{MC}} \left\langle \Xi \right\rangle \right) = \frac{1}{M} \sum_{i=1}^{M} \Xi_{i}(\mathbf{r}_{i})$$