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What	Condensed	Phases	are	Important?	

•  Homogeneous	liquid	solu8ons	are	the	most	common	
condensed	phases	found	in	experimental	chemistry.	We’ll	
focus	on	these,	but	make	connec8ons	to	others	

•  Solids	
•  Surfaces	
•  Liquid	crystal	solu8ons	
•  Supercri8cal	fluids	
•  Membranes	
•  Note,	in	certain	instances,	the	fine	line	between	a	condensed	

phase	and	a	supermolecular	complex	



Why	is	Solva8on	Important?	

•  Condensed-phase properties depend on the condensed-
phase wave function, and <Ψgas|A|Ψgas> may be very 
different from <Ψsol’n|A|Ψsol’n>	

•  Interactions between two (or more) molecules in solution 
depend on partial desolvation of each	

•  Potential energy hypersurfaces (and hence kinetics and 
equilibria) may be quantitatively and qualitatively 
different in solution by comparison to the gas phase



Solvatochromism	of	Dye	ET30	(S1	–	S0)	
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Solvent Color λmax, nm
anisole yellow 769 
acetone green 677 

2-pentanol blue 608 
ethanol violet 550 

methanol red 515 
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Related	Poten8al	Energy	Surfaces	
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PES	Slice	—	The	Menschutkin	Reac8on	
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The	Generic	Free-Energy	Cycle	
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Explicit	and	Implicit	Solvent	Modeling:	Two	
Alterna8ve	Approaches	

•  Explicit	solvent	modeling	is	conceptually	obvious:		
add	lots	of	solvent	molecules	and	compute	blue	
curve	on	last	slide	

•  Implicit	solvent	modeling	is	more	subtle:		forget	
about	molecular	representa8on	of	solvent;	
compute	gas-phase	curve	by	one	method,	then	
compute	free	energies	of	solva8on	at	points	of	
interest	by	a	different	method	(this	can	actually	
be	done	in	a	blue-curve	fashion	too,	but	the	
solvent	remains	implicit)	



(Equilibrium) Free Energy of Solvation
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SOLVENT DEPENDENCE

"
#
$E ⇒ Electronic Energy

N ⇒ Nuclear Repulsion
P ⇒ Solute-Solvent Polarization

   Solvent Dielectric

"
#
$C ⇒ Cavitation

D ⇒ Dispersion
S ⇒ Structural etc.

   Other Solvent Properties
(also	called	“non-electrosta8c”	component)	
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Some	Rules	for	Explicit	Solvent	Modeling	

•  Rule 1:  It takes a lot of solvent 
molecules to look like a solution. 
Put differently, clusters only tell one 
about clusters.

•  Consequence:  Quantum mechanics 
is very, very expensive (although 
use of Car-Parinello approach is 
ongoing). Instead, molecular 
mechanics (i.e., force field) 
approaches tend to be used for at 
least some of the system.

•  Tools:  Periodic boxes or Ewald 
sums to limit system size. QM/MM 
implementations.



But	It	Is	There!	Solvent	Density	Analysis	

Nagan,	et	al.		J.	Am.	Chem.	Soc.	1999,	121,	7310.		
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But	It	Is	There!	Solvent	Density	Analysis	
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Some	Rules	for	Explicit	Solvent	Modeling	

•  Rule 2:  Equilibrium properties (e.g., 
free energies) require averaging over 
phase space.

•  Consequence:  Sampling phase 
space becomes a key issue. Brute 
force is impossible in a real system. 
Free energy convergence can be 
very slow.

•  Tools:  Monte Carlo or Molecular 
Dynamics sampling until apparent 
(ergodic) convergence. More robust 
if multiple trajectories are run from 
different starting points.



Integra8ng	over	Phase	Space	
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Ξ =
Ξ r( )P r( )dr

PS∫
P r( )dr

PS∫
Expectation values (whether quantum or classical) are dictated by the relative 

probabilities of being in different regions of phase space

€ 

P r( ) = e−E q,p( ) / kBT Q = P r( )dr
PS∫

Difficulty:  Phase space is 6N-dimensional. If you only want to sample all possible 
combinations of either positive or negative values for each coordinate (i.e., hit every 

“hyperoctant” in phase space once), you need 26N points!

Key point:  Don’t waste time evaluating Ξ(r) if P(r) is zero.



MC/MD	Provides	Ready	Access	to	Many	
Proper8es	in	Solu8on	

•  Average	structures	(with	standard	devia8ons);	
note	that	these	structures	may	be	determined	
with	constraints	imposed	(e.g.,	from	NMR	NOE	
measurements)	

•  All	kinds	of	quantum	mechanical	proper8es	
(albeit	usually	averaged	over	fewer	snapshots	
than	the	en8re	trajectory)	

•  Structural	details	associated	with	the	solva8on	
shell	(typically	NOT	available	from	implicit	
models)	



Radial	Distribu8on	Func8on	
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Integra8ng	over	Phase	Space	
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Ξ =
Ξ r( )P r( )dr

PS∫
P r( )dr

PS∫
Expectation values are dictated by the relative probabilities of being in different 

regions of phase space

€ 

P r( ) = e−E q,p( ) / kBT Q = P r( )dr
PS∫

Difficulty:  Phase space is 6N-dimensional. If you only want to sample all possible 
combinations of either positive or negative values for each coordinate (i.e., hit every 

“hyperoctant” in phase space once), you need 26N points!

Key point:  Don’t waste time evaluating Ξ(r) if P(r) is zero.



What	About	Free	Energy	as	the	Average	Property?	
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Horrifyingly	slowly	convergent	for	two	structures	A	and	B	because	sampling	procedures	
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A	Trick	With	the	Integral	
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Thus,	sampling	over	coordinates	for	A,	determine	exponenDal	of	energy	difference	
between	A	and	B.	
	
Simpler	because	only	a	single	ensemble,	but	what	if	sample	over	A	is	not	ergodic	for	B?	



How	Can	We	Ensure	That	A	and	B	Are	“Similar”?	
	

e.g.,	HCN	vs.	HNC	
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Monitoring	the	Alchemical	Change	

ΔG

λ0 1

Hysteresis	is	another	
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reverse	is	one	
measure	of	

error	



Computa8onal	Alchemy	
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Computa8onal	Alchemy	

Note	that	perturbaDon	to	
nothing	(annihilaDon)	is	allowed,	
although	some	care	must	be	
taken	for	so	drasDc	a	
perturbaDon.	
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Some	Rules	for	Implicit	Solvent	Modeling	

•  Rule 1:  If one replaces the solvent 
molecules with a continuum dielectric (an 
equilibrium averaging, in essence) one is 
left with a system no “larger” than the 
solute.

•  Consequence:  All solvent-structural 
information is lost, but if one can afford 
QM for gas phase, one can afford QM for 
solution. Polarization now arises from first 
principles (self-consistent reaction field—
SCRF—induced in the medium).

•  Tools:  Numerous methods to solve or 
approximate the Poisson equation for 
continuous or discrete charge 
representations.



Some	Rules	for	Implicit	Solvent	Modeling	

•  Rule 1:  If one replaces the solvent 
molecules with a continuum dielectric (an 
equilibrium averaging, in essence) one is 
left with a system no “larger” than the 
solute.

•  Consequence:  All solvent-structural 
information is lost, but if one can afford 
QM for gas phase, one can afford QM for 
solution. Polarization now arises from first 
principles (self-consistent reaction field—
SCRF—induced in the medium).

•  Tools:  Numerous methods to solve or 
approximate the Poisson equation for 
continuous or discrete charge 
representations.
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Solvent-induced	Polariza8on	
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Polariza8on	Example—Nitroaroma8c	Radical	
Anion	
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Conduc8ng	Sphere	(Ion)	Example	

Sphere	carries	charge	q	and	has	radius	α.	
	
Charge	distribu8on	on	a	conduc8ng	sphere	is	
	
Poten8al	outside	sphere	is		
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ρ s( ) =
q

4πα2
, s on surface
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φ r( ) = −
q
ε r

Thus,	solving	for	the	work	of	charging	requires	integra8ng	only	
over	the	surface	of	the	sphere:	
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and	the	free	energy	of	polariza8on	GP	is	the	
difference	in	the	work	of	charging	in	solu8on	(ε	≠	1)	
and	the	gas	phase	(ε	=	1)	
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Dipole	in	a	Sphere	Example	(Kirkwood-Onsager)	

Sphere	carries	dipole	µ	at	center	and	has	radius	α.	
	
Analogous	analysis	leads	to		

This	leads	to	the	Schrödinger	equa8on:	
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which	is	varia8onally	minimized	by	a	Slater	determinant	formed	
from	solvated	orbitals	that	are	eigenfunc8ons	of:	
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Note	that	the	solvated	orbitals	and	associated	eigenvalues	will	be	
different	than	their	gas-phase	counterparts	

SCRF	
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Some	Rules	for	Implicit	Solvent	Modeling	

•  Rule 2:  A continuum dielectric is a fiction, 
so it is best not to get too caught up in 
theoretical rigor (ΔGENP is not even a 
physical observable…)

•  Consequence:  Construction of the 
dielectric cavity and/or methods for solving 
or approximating the Poisson equation can 
vary significantly from one model to the 
next.

•  Tools:  Parameterization just as important 
as for force-field models (even if 
occasionally it is stealth-parameterization).



Cavi8es	and	Their	Fillings	
Ideal	Cavi8es	

solute

εReaction Field

 

Spheres and ellipsoids:  Permit analytic solution of Poisson equation for interior 
charge expressed as multipole expansion

Charge	in	a	sphere:		Born	equa8on	
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q	is	charge	and	α	is	
radius	of	cavity	sphere	



µ	is	dipole	moment	
and	α	is	radius	of	
cavity	sphere;	

requires	SCRF	since	
relaxa8on	of	Ψ	affects	

µ	
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Dipole	in	a	sphere:		Kirkwood-Onsager	equa8on	

Cavi8es	and	Their	Fillings	
Ideal	Cavi8es	

solute

εReaction Field

 

Spheres and ellipsoids:  Permit analytic solution of Poisson equation for interior 
charge expressed as multipole expansion



M	is	solute	or	reac8on	
field	mul8pole	
moment	(order	l	

component	m)	and	f	is	
a	“reac8on-field	

factor”	
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Any	number	of	mul8poles	in	a	sphere	or	ellipse:		
Rivail	and	Rinaldi	

Cavi8es	and	Their	Fillings	
Ideal	Cavi8es	

solute

εReaction Field

 

Spheres and ellipsoids:  Permit analytic solution of Poisson equation for interior 
charge expressed as multipole expansion



Cavi8es	and	Their	Fillings	
Ideal	Cavi8es	

Spheres and ellipsoids:  Permit analytic solution of Poisson equation for interior 
charge expressed as multipole expansion

But	such	cavi8es	tend	to	be	very	unrealis8c	for	arbitrarily	shaped	
molecules	



Con8nuous	
distribu8on:		PCM	

(MST)	of	Tomasi	and	
many	coworkers	(also	

COSMO)	

Cavi8es	and	Their	Fillings	
Arbitrary	Cavi8es	

Arbitrary cavities require non-analytic or approximate solutions of the Poisson 
equation for interior charge expressed as either a continuous charge distribution or a 

single- or multicenter multipole expansion

solute

ε
Can Integrate through Volume

Can Integrate at Surface

Can use 
approximate
form for 
Poisson
equation

 



Cavi8es	and	Their	Fillings	
Arbitrary	Cavi8es	

Arbitrary cavities require non-analytic or approximate solutions of the Poisson 
equation for interior charge expressed as either a continuous charge distribution or a 

single- or multicenter multipole expansion

Mul8pole	expansion:		
Rivail	and	many	

coworkers	

solute

ε
Can Integrate through Volume

Can Integrate at Surface

Can use 
approximate
form for 
Poisson
equation

 



Cavi8es	and	Their	Fillings	
Arbitrary	Cavi8es	

Arbitrary cavities require non-analytic or approximate solutions of the Poisson 
equation for interior charge expressed as either a continuous charge distribution or a 

single- or multicenter multipole expansion

Generalized	Born:		GB	
(S8ll	and	subsequent	
others,	classical)	and	

SMx	(Cramer	&	
Truhlar,	quantum	
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LimiDng	behaviors…	
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Bulk	Electrosta8c	Effects	
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Avoids	charge	penetraDon	
and	can	be	put	into	pairwise	
form	(advantages)	but	
requires	parDal	atomic	
charges	(disadvantage).	Now	
heavily	used	for	classical	
simulaDons,	less	for	quantum	
calculaDons.	
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Some	Rules	for	Implicit	Solvent	Modeling	

•  Rule 3:  Electrostatics are only part of the 
free energy of solvation.

•  Consequence:  One needs to somehow 
account for cavitation, dispersion, solvent-
structural changes, etc., if one wants to 
make contact with the experimental 
observable.

•  Tools:  It’s nice if you can also fix up your 
electrostatic approximations at the same 
time



How	to	Account	for	Nonelectrosta8c	Terms?	

•  Ignore	them	completely	(poten8ally	valid	for	
polyelectrolytes,	where	electrosta8c	effects	will	be	
expected	to	dominate	in	any	case)	

•  Alempt	to	compute	separately	using,	e.g.,	scaled-par8cle	
theory	to	es8mate	cavita8on	costs,	dispersion	from	
models	employing	atomic	or	group	polarizabili8es,	others	
from…?	

•  Assume	propor8onality	to	solvent-accessible	surface	area	
of	atoms	or	groups	and	parameterize	microscopic	surface	
tensions	(or	surface	tension	func8onals)	

•  Con8nuum	solva8on	is	semiempirical	from	the	outset,	so	
parameteriza8on	is	no	sin	(CJC	personal	opinion…)	



	
Cavita8on,	Dispersion,	Structural	rearrangement	of	solvent	

Solvent	Accessible	Surface	Area	

(defines	the	first	solva8on	shell)	
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atomic	surface	tension	designed	to	account	for	the	
effect	of	solute	geometry



Microscopic	Surface	Tensions	
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GCDS = Akσk
k
∑

Example:		The	SMx	universal	solva8on	models	
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σ i = ˆ σ Z i
(ξ j )

ξ j
j

descr

∑

Some	Descriptors	ξ:	
n	is	solvent	index	of	refrac8on	

γ	is	solvent	macroscopic	surface	tension	
α	is	solvent	hydrogen-bonding	acidity	(Abraham)	
β	is	solvent	hydrogen-bonding	basicity	(Abraham)	

Z	is	atomic	number	



€ 

ΔGS,expt
o −ΔGENP =GCDS = Akσ k

k
∑

Microscopic	Surface	Tensions	

Example:		The	SMx	universal	solva8on	models	

€ 

σ i = ˆ σ Z i
(ξ j )

ξ j
j

descr

∑

Some	Descriptors	ξ:	
n	is	solvent	index	of	refrac8on	

γ	is	solvent	macroscopic	surface	tension	
α	is	solvent	hydrogen-bonding	acidity	(Abraham)	
β	is	solvent	hydrogen-bonding	basicity	(Abraham)	

AWer	parameterizaDon	(about	72	parameters	for	2500	data	{H,C,N,O,F,S,P,Cl,Br-
compounds}	in	91	solvents	including	water)	SM8	

has	a	mean	unsigned	error	of	approximately	0.6	kcal	mol–1	for	neutrals	
and	3-6	kcal	mol–1	for	ions,	depending	on	solvent	

Z	is	atomic	number	



Examples of Solvent Descriptors 

     H2O C6H6 CH2Cl2 

dielectric constant  78.36 2.27 8.93 
Abraham’s hydrogen bond acidity  0.82 0.00 0.10 
Abraham’s hydrogen bond basicity   0.38 0.14 0.05 

refractive index 1.33 1.50 1.42 
surface tension (cal mol-1Å-2) 104.71 40.62 39.15 

carbon aromaticity 0.00 1.00 0.00 
electronegative halogenicity  0.00 0.00 0.67 



SM8	Performance	

Cramer, C. J.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 760	

Mean	unsigned	errors	(kcal/mol)	for	SM8	and	some	other	popular	conDnuum	
solvaDon	models	

Solute class Data SM8 IEF-PCM C-PCM PB All equal 

 N   G03/UA0 GAMESS Jaguar to mean 

aqueous neutrals 274 0.5 4.9 1.6 0.9 2.7 

nonaq. neutrals 666 0.6 6.0 2.8 2.3 1.5 

aqueous ions 112 3.2 12.4 8.4 4.0 8.6 

nonaqueous ions 220 4.9 8.4 8.4 8.1 8.6 
 

Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. “Performance of SM6, SM8, and SMD on the SAMPL1 Test Set for the 
Prediction of Small-Molecule Solvation Free Energies” J. Phys. Chem. B 2009, 113, 4538.
Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. “Prediction of SAMPL2 Aqueous Solvation Free Energies 
and Tautomeric Ratios Using the SM8, SM8AD, and SMD Solvation Models” J. Comput.-Aid. Mol. Des. 2010, 24, 317.	



SMD	Example	from	G09	
TS	structure	for	water-
assisted	tautomeriza8on	
of	1-methylthymine		

Gas	phase	
	SCF	Done:		E(RM06)	=		-510.336253045					A.U.	aver				1	cycles	

	Dipole	moment	(Debye):	Tot	=	5.3667	

Aqueous	
	SCF	Done:		E(RM06)	=		-510.358270799					A.U.	aver			12	cycles	
													Convg		=				0.4387D-08													-V/T	=		2.0099	
	SMD-CDS	(non-electrosta8c)	energy													(kcal/mol)	=							4.81	
	(included	in	total	energy	above)	

Free	energy	of	solva8on	=	–510.358271	–	(–510.336253)	=	–0.022018	a.u.	=	–13.8	kcal/mol	

	Dipole	moment	(Debye):	Tot	=	7.5777	

Note	(i)	significant	non-electrostaDc	component	and	(ii)	significant	polarizaDon	as	judged	by	
increased	dipole	moment.	



Func8onal	Form	for	GCDS 

SM6	

€ 

GCDS = Ak σ k + σ kk' (R)
k '

atoms
∑

$ 

% 
& 
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k

atoms
∑

SM6T	

  

€ 

GCDS =GCDS T0( ) +

ΔSS
! T −T0( ) +

ΔCP
! T −T0( )−T ln T T0( )[ ]

temperature	dependence	of	the	non-electrosta8c	contribu8ons	to	
the	free	energy	of	solva8on	rela8ve	to	the	value	at	T0	(298	K)	

contribu8on	at	298	K	
from	SM6	

Introduc8on	of	Temperature	Dependence	into	GCDS	



Func8onal	Form	for	GCDS 

SM6	
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atoms
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* T −T0( )−T ln T T0( )[ ]

temperature	dependence	of	the	non-electrosta8c	
contribu8ons	to	the	free	energy	of	solva8on	rela8ve	
to	the	value	at	T0	(298	K)	

entropy-like	
component	

heat	capacity-like	
component	

Introduc8on	of	Temperature	Dependence	into	GCDS	
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Solvation (Condensed Phase) 
Models 

Implicit Solvent—Phase-phase Partitioning 
 

Video VI.vi 



solvent A

solvent B

ΔGS
o(A→ B)

gas-phase

pure solution 
of solute

ΔGS
o(self )

gas-phase

liquid solution

ΔGS
o

Absolute free energy of solvation

Solvation free energy —
all solvents, no types

Free energy of self-solvation

Vapor pressure

Transfer free energy of solvation

Partition coefficient

What	Do	We	Predict	with	SMx	Solva8on	Models?	

By combining these, we also calculate solubility. Have also extended to:
•  Interface adsorption
•  Membrane permeability	



Agas

Asol’n (1) Asol’n (2)

∆GS (1) ∆GS (2)
o o

∆G(1)↔(2)
o

Free Energies of Solvation and Partition Coefficients



9-methyladenine
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9,N6-dimethyladenine 1-methylcytosine 5-bromo-1-methylcytosine

2-amino-9-methylpurine 2,6-diamino-9-methylpurine 1-methylthymine 1,5-dimethylcytosine

9-methylguanine 9-methylhypoxanthine 1-methyluracil 5-bromo-1-methyluracil
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Natural and Unnatural Nucleic Acid Bases

Giesen	et	al.	J.	Phys.	Chem.	B	1997,	101,	5084.		



Calculated Chloroform/Water Partition Coefficients

Solute SM5.4/A

logK
 
CHCl3/H2O 

Experiment

logK
 
CHCl3/H2O 

9-Methyladenine –1.6 –0.8
9,N6-Dimethyladenine –0.3 0.4*
2-Amino-9-methylpurine –1.9 –0.5*
2,6-Diamino-9-methylpurine –2.4
9-Methylguanine –4.1 –3.5
9-Methylhypoxanthine –3.5 –2.5
1-Methylcytosine –4.3 –3.0
5-Bromo-1-methylcytosine –2.4
1-Methylthymine –0.3 –0.5
1,5-Dimethylcytosine –3.1
1-Methyluracil –1.2 –1.2
5-Bromo-1-methyluracil –0.3 –0.7*
Mean unsigned error: 0.7

*	=	predicted	
before	

measurement	
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Mean-unsigned error (MUE) in predicted log P•

                      SM5.42R                          
Solute class No. data HF B3LYP AM1
hydrocarbons 11 0.3 0.3 0.2
aromatics  6 0.2 0.3 0.2
alcohols/phenols 9 0.3 0.2 0.3
ethers 4 0.2 0.2 0.2
carbonyls 11 0.7 0.5 0.8
esters 7 0.3 0.2 0.6
CHN compounds 7 0.2 0.2 0.4
nitro compounds          5 0.1 0.2 0.3
HCNO compounds 60 0.3 0.3 0.4
halocarbons 15 0.4 0.4 0.5
all liquid solutes 75 0.3 0.3 0.4

Winget et al. J. Phys. Chem. B 2000, 104, 4726



Mean-unsigned error (MUE) in predicted log S
                     SM5.42R                   

Solute class No. data HF B3LYP AM1 UNIFAC
hydrocarbons 11 0.5 0.4 0.4 1.4
aromatics  6 0.1 0.0 0.1 0.2
alcohols/phenols 9 0.3 0.2 0.3 0.6
ethers 4 0.5 0.5 0.5 0.5
carbonyls 11 0.4 0.4 0.5 0.3
esters 7 0.3 0.3 0.2 0.1
CHN compounds 7 0.7 0.5 0.6 0.5
nitro compounds 5 0.4 0.4 0.2 0.2
HCNO compounds 60 0.4 0.4 0.4 0.6
halocarbons 10 0.2 0.3 0.2 0.4
all liquid solutes 70 0.4 0.3 0.3 0.5
solid solutes 13 0.3 0.4 0.5 0.8

Thompson et al. J. Chem. Phys. 2003, 119, 1661



Analysis of Membrane/Water Partitioning

*
* *

*

***
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* = Solute
Known starting concentrations
Microsyringe to sample aqueous phase
Interior vesicle volume negligible
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“Solvent” Model for Phosphatidyl Choline

SM5.4 requires:

Best guess:

Regression fit:

ε
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d
y =  - 5.2182e-2 + 0.90812x   R^2 = 0.795

Chambers et al. in Rational Drug Design, Truhlar, et al. Eds.; Springer:  New York, 1999, p. 51.



Soil/Water Partitioning

Dirt

Important factor controlling the 
persistence of environmental contaminants

organic
carbon

KOC =
[X]soil / %OC

[X]aqueous

remarkably constant from clay to loam to peat

carbamates, phosphonothioates, polyhalogenated aromatics, ureas, horrible molecules



“Solvent” Model for Soil

SM5.42R requires:

Best guess:

Regression fit:

ε

?

(15.0)

n

?

1.379

α

?

0.61

β

?

0.60

γ

?

46.0

"Dirt/MIDI!"

Mean unsigned error over 387 compounds = 1 log unit



Correlation of a Subset of Chlorinated Biphenyls
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ClnClm Theory allows for an atom-by-atom decomposition
of the partitioning energies to better understand
factors affecting them



Solvation (Condensed Phase) 
Models 

Hybrid Explicit/Implicit Solvent 
“it was the best of models, it was the worst of models” 

 
Video VI.vii 



Equilibria:		Thema	mit	Veränderungen	
pKa	(Born-Haber	cycle)	

A–
(g) + H+

(g)AH(g)

AH(s) A–
(s) + H+

(s)

∆Go
S(H+)

∆Go
g

∆Go
S(AH)

∆Go´
aq

∆Go
S(A–)

1)  Need	 diffuse	 func8ons	 in	 basis	 set	 and	 good	 theory	 to	 get	 accurate	 gas-phase	
deprotona8on	free	energy	

2)  Can’t	 compute	 E	 for	 H+	 (no	 electrons!)	 so	 electronic	 structure	 programs	 are	
reluctant	to	compute	thermal	contribu8ons	to	G	(but	a	good	spreadsheet	will)	

3)  ΔGo
S	of	proton	is	an	experimental	quan8ty	(–264.0	kcal	mol–1)	

4)  Standard-state	concentra8on-change	free	energy	must	be	included	
5)  Each	non-cancelled	error	of	1.4	kcal	mol–1	in	any	step	will	lead	to	an	error	in	pKa	of	1	

pK	 unit	—	errors	 in	 ionic	 solva8on	 free	energies	 are	poten8ally	much	 larger	 than	
this…	

6)  Can	correct	for	func8onal-group	systema8c	errors,	see:		Klicic	et	al.	J.	Phys.	Chem.	A	
2002,	106,	1327.	
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pKa = −log e−ΔGaq
o $ /RT( )
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2.303RT



Free	Energy	Cycles	and	Ions	
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No explicit water molecules	
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Free	Energy	Cycles	and	Ionic	Clusters	

+

++
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H2O • A−(g)  
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H2O • A−(aq)
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H2O (aq)  
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AH (aq)  € 
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Treat the ion as a cluster

  

€ 

2.303RTpKa = ΔGg
! (AH)−ΔGS

∗(AH)−ΔGS
∗(H2O) +ΔGS

∗(H2O •A−) +ΔGS
∗(H+)

For	 addiDonal	 details	 on	 cluster	 solvaDon	 free	 energies	 and	 their	 use	 to	 set	 the	
absolute	 solvaDon	 free	 energy	 of	 the	 proton	 and	 the	 absolute	 potenDal	 of	 the	
normal	 hydrogen	electrode	 (NHE),	 see	Kelly,	 C.	 P.;	 Cramer,	 C.	 J.;	 Truhlar,	D.	G.	 J.	
Phys.	Chem.	B	2006,	110,	16066.	



Example:		pKa	of	Methanol	(Expt.	15.5)	

  

€ 

ΔGg
! = + 375.0 kcal/mol

ΔGS
∗(H+)   = − 265.9 kcal/mol

ΔGS
∗(MeOH) = − 5.11kcal/mol

  

€ 

ΔGg
! = + 358.0 kcal/mol

ΔGS
∗(H+)   = − 265.9 kcal/mol

ΔGS
∗(MeOH) = − 5.11kcal/mol

ΔGS
∗(H2O) = − 6.32 kcal/mol

Δ	G	S	*	(MeO	-	)	 =	 -	88	.	3	kcal/mol	 Δ	G	S	*	(H	2	O	•	MeO	- )	 =	 -	81	.	8	kcal/mol	

€ 

pKa = 20.4

€ 

pKa =16.0

Experimental data:	 Experimental data:	

Calculated (SM6) data:	 Calculated (SM6) data:	

€ 

MeOH /H2O •MeO−

(Cycle	2)	

€ 

MeOH /MeO−

(Cycle	1)	



Adding	More	Waters	

Adding	explicit	water	molecules	improves	the	accuracy	of	the	calcula1on		

Calculated	pKa’s	

Experimental	pKa’s	

H2CO3	 HCO3
-	 CO3

2-	

€ 

pKa1 = 6.4

€ 

pKa2 =10.3

No. H2O 

0 -0.6 1.6 
1   1.3 5.0 
2   2.3 7.8 
3   4.2 9.0 
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Clustering	Other	Ions	
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:		clustered	ion	used	:		bare	ion	used	,	

Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A. 2006, 110, 2493 



Ru(bpy)(damp)	Catalyst	
N

N
RuIV

N
Me2N

NMe2

O

criDcal	chemical	step	

Vigara	et	al.	Chem.	Sci.	2012,	3,	2576.	



Photo	courtesy	Natalie	Lucier	of	Flickr	under	CreaDve	Commons	license	


