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1. In class, we went through Hückel theory as applied to the allyl cation in considerable 
detail (following the textbook). Consider if the central C–H fragment in the allyl cation were to 
be replaced by the isoelectronic N: (with an in-plane lone pair). The 2-azaallyl cation is easily 
generated by deprotonation of N-methylformaldimine. Now, here are a few experimental facts:  
(i) the ionization potential of the methyl radical is 9.8 eV, (ii) the ionization potential of the 
amidogen radical is 10.8 eV, (iii) the rotational barrier of ethylene is 60 kcal/mol, (iv) the 
rotational barrier of formaldimine is 60 kcal/mol. Now, some questions: (i) what is the Hückel 
resonance energy for the 2-azaallyl cation? How do the 2-azaallyl system orbitals differ from the 
allyl system? Carry out AM1 calculations for the allyl and 2-azaallyl cations and visualize the 
orbitals; are they consistent with your predictions from Hückel theory? Compute the rotational 
barriers for a terminal methylene unit in allyl and 2-azaallyl; are they consistent with your 
predictions from Hückel theory? 
 
 Including an N atom in Hückel theory will require us to do several things. 
First, we must decide what basis function to put on the N; a 2pZ orbital seems 
obvious (just like for a C atom). Next, we need to define overlap matrix elements 
involving this orbital with others; using the same S = 1 approximation as with all-
C Hückel theory seems sensible. Finally, we need to know Hii and Hij for a N atom 
as atom i and a C atom as atom j (there’s only one N atom in our system, so we 
don’t need to worry about N–N interactions). By analogy to the all-C theory, we 
should make the Hii value equal to the negative of the ionization potential (IP) of 
the corresponding mono-N species, which in this case is the amidogen radical, 
NH2•. Since the –IP of the methyl radical defines α, the data above suggest that 
we should use 1.1α for Hii when i refers to an N atom. As for nearest neighbor 
interactions, since data suggest that the rotational barrier about H2C=NH is equal 
to that for H2C=CH2, we can evidently continue to use β for this quantity. In that 
case, the secular equation | H – ES | = 0 becomes 
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Expanding this determinant using Cramer’s rule gives 
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1.1α − E( ) α − E( )2
− 2β2 α − E( ) = 0 (2) 
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One root for this equation is E = α. Factoring this out from eq. 2, we have 
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1.1α − E( ) α − E( ) − 2β2 = 0 (3) 
 
This is a quadratic in E, which may be more easily solved from expanding to 
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E2 − 2.1αE + 1.1α2 − 2β2( ) = 0 (4) 

 
which has solutions 
 

 
    

€ 

E =
2.1α ± 4.41α2 − 4 1.1α2 − 2β2( )

2

=
2.1α ± 8β2 + 0.01α2

2
≈1.05α ± 2β

 (5) 

 
The final simplification is adequate for qualitative purposes (the term involving α 
in the square root changes the value of the square root by about 4%). If we really 
wanted quantitative accuracy, we could always plug back in the true energy 
values for α and β, but I’ll focus here more on the qualitative aspects. 
 
 The first question was, what is the resonance energy of the 2-azaallyl 
cation? Putting two electrons into the lowest energy orbital would give a total 
energy of 2.1α + 2√2β. In the case where we rotate a CH2+ terminus out of 
conjugation, both electrons would go into the remaining H2C=NR double bond, 
which has energy 2.1α + 2β (if that’s not obvious, try doing the 2 x 2 secular 
equation, solve for the roots, and put 2 electrons in the lowest energy orbital). So, 
just as in the allyl cation system, the resonance energy is (2√2 – 2)β, or about 
0.86β (again, a very small amount larger in magnitude for 2-azaallyl if we hadn’t 
ignored the 4% contribution from 0.01α2 above). 
 
 Now, with those 3 value of E as roots for the secular equation, we can 
determine molecular orbital coefficients. Let’s do the lowest-energy case first. 
The relevant system of linear equations is 
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a1 α − 1.05α + 2β( ) •1⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + a2 β − 1.05α + 2β( ) • 0⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ + a3 0 − 1.05α + 2β( ) • 0⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ = 0

a1 β − 1.05α + 2β( ) • 0⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + a2 1.1α − 1.05α + 2β( ) •1⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ + a3 β − 1.05α + 2β( ) • 0⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ = 0

a1 0 − 1.05α + 2β( ) • 0⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ + a2 β − 1.05α + 2β( ) • 0⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ + a3 α − 1.05α + 2β( ) •1⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ = 0

 (6) 

 
Subtraction of the 3rd equation from the first establishes that a1 = a3. Making 
that substitution in the 2nd equation gives 
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a2 0.05α − 2β[ ] + 2βa1 = 0 ⇒ a2 =
2β

2β− 0.05α

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ a1

 (7)

 

 
If we recall that both α and β are negative quantities, we see that the prefactor on 
the right-hand-side of eq. 7 is greater than √2 (plugging in numbers, the 
prefactor in eq. 7 is about 1.93 compared to √2 in the all-C allyl system, which is 
1.41). Now, applying the normalization constraint 
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ai
2

i=1

3
∑ =1 ⇒ a1

2 + (1.93)2a1
2 + a1

2 =1

⇒ a1 = 0.42, a2 = 0.81, a3 = 0.42

 (8) 

 
this can be compared to the case for all-C allyl, where the coefficients are 0.50, 
0.70, and 0.50. Thus, the amplitude at the central N atom is increased in the 
lowest energy orbital. This result is as we would expect noting that the N is more 
electronegative than C (that’s why its –IP parameter is 10% larger than C). 
 
 Note that for the second orbital, the energy determined above (E = α) does 
not differ from the allyl example that we did in class, and the solution of the 
linear equations is the same (coefficients of 0.70, 0.00, and –0.70). While the 
algebra is not shown here, solving for the highest energy MO will lead to a 
denominator in the prefactor analogous to that in eq. 7 that has “+” 0.05α, 
instead of minus. Thus, the coefficients end up as roughly 0.55, –0.62, 0.55 
(where for the all-C allyl case, they are 0.50, –0.70, and 0.50); the contribution of 
N to this orbital is diminished (which is necessary, actually, to balance for its 
enhanced contribution to π1). Looking at the orbitals in GaussView, one sees, for 
example: 
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 π1 for all-C allyl system π1 for 2-azaallyl system 
 
where the greater contribution from the N atom to the 2-azaallyl system π1 is 
clear (one does have to increase the isodensity value substantially to see this, 
since the bonding orbital is entirely in phase across all 3 atoms). One may see the 
variations in π3 somewhat more readily because the orbitals are out of phase: 
 

  
 π3 for all-C allyl system π3 for 2-azaallyl system 
 
where now the greater contribution of the central atom relative to the outer 
atoms is indeed seen for the all-C allyl π3 compared to the 2-azaallyl analog. 
 
 As for the rotational barriers, at the AM1 level, the rotational barrier for allyl 
cation is 18.6 kcal/mol. That’s pretty close to what Hückel theory predicts (0.83β 
is 0.83 x 30 kcal/mol is about 25 kcal/mol). But, perhaps surprisingly, optimizing 
the rotated 2-azaallyl cation lowers the energy by more than 30 kcal/mol. The 
issue, of course, is that the result of rotation is a highly delocalized H2C=N=CH2+ 
molecule that is conjugated in both directions (the two methylene groups are 
twisted 90° relative to one another) because N has p orbitals participating in both 
π systems (something a C atom can’t do since it carries an H substituent). We 
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haven’t discussed how to do Hückel theory with two different π systems, one in 
plane and one out of plane, so we’ll just have to put this problem down, now. 
 
2. In Problem Set 1, we computed the internal hydrogen bond energies for the Kass polyol 
and its conjugate base alkoxide form. Based on the differential “internal” solvation energies, we 
estimated the energetic effect of hydrogen bonding on the acidity of the Kass polyol (just the 
parent compound—you need not do the various methylated species) compared to t-butanol. For 
your best extended and internally hydrogen bonded structures from PC Model, repeat these 
calculations at the AM1, PM3, PM6, HF/6-31G(d), HF/6-31+G(d), and MP2/6-
31+G(2df,p)//HF/6-31+G(d) levels and report your results. Comment on variations between the 
models and any interesting price/performance issues. For the HF/6-31G(d) level, compute 
frequencies and thermal contributions to free energy therefrom. By how much do these thermal 
contributions cause ΔG of internal hydrogen bonding to differ from ΔE? How do the IR spectra 
of the extended conformers differ, qualitatively, from those of the internally hydrogen-bonded 
conformers? 
 
 To remind us of the results from last round, with PC Model I found: 
 

  
 
 4.7 11.4 
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 –4.8 –31.5 
 
So, internal hydrogen bonding stabilizes the neutral minimum (relative to its 
fully extended conformation) by 9.5 kcal/mol, but the anion by 42.9 kcal/mol. 
Thus, the gas-phase acidity of the tetraol should be enhanced by about 33.4 
kcal/mol compared to t-butanol (i.e., a final value of about 335 kcal/mol). That’s 
roughly 24 pK units of enhanced acidity! 
 
 In the below table, I report the electronic energies from the requested levels 
of theory. 
 
 

Computed Energies (Eh) of Polyols and Conjugate Bases 
 

 Kass Polyol  Deprotonated Kass Polyol 
 Extended Internal H-

bonds 
 Extended Internal H-

bonds 
AM1 –0.355 43 –0.365 29  –0.365 64 –0.386 33 
PM3 –0.317 73 –0.327 72  –0.331 88 –0.373 80 
PM6 –0.327 35 –0.335 63  –0.364 29 –0.393 61 
HF/6-31G(d) –573.788 10 –573.802 16  –573.181 57 –573.234 39 
HF/6-31+G(d) –573.809 59 –573.820 96  –573.216 12 –573.260 47 
MP2/6-31+G(2df,p)// 
  HF/6-31+G(d) 

–575.943 15 –575.957 07  –575.363 93 –575.413 05 

 
and these values lead to the following predictions for internal hydrogen bonding 
energies: 
 
 
 



  7 

Computed Energies (kcal/mol) of Internal Hydrogen Bonding 
 

 Neutral Conj. Base 
AM1 –6.2 –13.0 
PM3 –6.3 –26.3 
PM6 –5.2 –18.4 
HF/6-31G(d) –8.8 –33.1 
HF/6-31+G(d) –7.1 –27.8 
MP2/6-31+G(2df,p)// 
  HF/6-31+G(d) –8.7 –30.8 
 
 So, we certainly expect the best level to be MP2/6-31+G(2df,p)//HF/6-
31+G(d). We see PC Model did OK for the neutral polyol (predicting 9.5 kcal/mol 
compared to this estimate of –8.7). For the anion, PC Model did much less well, 
overestimating the hydrogen bonding energy by 12.1 kcal/mol. All of the quantum 
models do OK for the neutral system, although PM6 is curiously worse than the 
older AM1 and PM3 models. For the anion, on the other hand, AM1 and PM6 are 
both very bad (poor hydrogen bonding was noted in AM1 from early on), but PM3 
isn’t bad. Indeed, PM3’s differential hydrogen bonding prediction is 20 kcal/mol, 
while the best estimate is 22.1 kcal/mol (still a lot of pK units of acidity). None of 
these calculations were terribly time consuming, but PM3 was certainly more 
efficient than getting to MP2/6-31+G(2df,p)//HF/6-31+G(d), so getting to within 
2 kcal/mol of correct is pretty good! 
 
 With respect to the ability of the levels of theory to make absolute 
predictions, I tested MP2/6-31+G(2df,p)//HF/6-31+G(d) (the best level that 
we’re using here) for t-BuOH  t-BuO– + H+, and computed ΔE = 381.2 
kcal/mol. As noted in the last problem set, the experimental deprotonation 
enthalpy is 368 kcal/mol. The difference between ΔE and ΔH favors products by 
about 10 kcal/mol (see below), so our best level underestimates the acidity of t-
BuOH by only about 3 kcal/mol. MP2 is actually a pretty good level for predicting 
acidities, but our basis set is still too small to fully stabilize the anion (that’s why 
we’re underestimating the acidity). Of course, we could use this error to correct 
our estimates for the Kass polyol if we wanted to have more quantitative 
estimates without doing more calculations. 
 
 The frequency calculations permit us to compare energies, enthalpies, and 
free energies for internal hydrogen bonding and deprotonation. Thus, at the 
HF/6-31G(d) level, the internal hydrogen bonding is favored for the neutral with 
ΔE, ΔH, and ΔG values of –8.8, –7.9, and –6.5 kcal/mol, respectively. The 
reduction in free energy compared to potential energy derives from the 
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“tightness” of the internally hydrogen bonded structure (less entropy) compared 
to the extended structure. Similarly, for the conjugate base form, the 
corresponding values are –33.1, –31.7, and –27.4. Thus, the much larger 
“tightness” in the anion leads to a larger loss of free energy upon forming internal 
hydrogen bonds. Net effect is to reduce differential favoring the anion from 24.3 
to 20.9 kcal/mol:  still a big acidity enhancement, but lowered 3.4 kcal/mol from 
loss of entropy. 
 
 The last part of the question deals with the IR spectra (available from the 
frequency calculations) that permit differentiation of extended conformers from 
internally hydrogen bonded ones. As shown below, where the spectrum for the 
extended conformation is shown before that for the internally hydrogen bonded 
one 
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We can see that there is more richness in the OH stretching region for the internally 
hydrogen-bonded conformer (and also in the fingerprint region). 
 
 While not shown in this answer key, the comparison for the anions has the 
dramatic difference that the extended conformation has all OH stretches sharp above 
4000 cm–1 but the internally hydrogen-bonded stretches are red-shifted to about 3500 
cm–1 and broadened. 
 
 
3. Consider the bicyclic alazane molecules on the next page, and in particular their 
basicities. Compute, at the levels indicated in the below tables, Al–N bond lengths optimized at 
the indicated levels of theory (consider:  are there possibilities for bond-stretch isomerism?) and 
proton affinities at the indicated levels of theory. In some detail, discuss your modeling strategy 
and results, addressing in particular the chemistry, but also considering how the semiempirical 
models compare to the more complete levels of wave function theory. Nota bene:  sensible 
attention to job ordering and symmetry will help you to stay within the development queue time 
limits as you work on this problem. Imagine that this problem was motivated by a question from 
an experimental colleague, namely, “How does the basicity of the alazane compare to that of the 
hexafluoroalazane?” 
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 Taking advantage of the C3 symmetry of these species makes this problem 
tractable. Failing to do so leads to painfully slow optimizations at, say, the MP2 
level. A practical approach, if one does not want to try to generate a C3 geometry 
by hand, is to do an initial optimization at a semiempirical level, note the “near” 
C3 character of the optimized geometry, and then take advantage of GaussView’s 
ability to complete the “symmetrization” of such structures. 
 
 
 

 
Al–N Bond Lengths (Å) in Alazanes 

 
 Bicyclo[3.3.3]alazane  Hexafluorobicyclo[3.3.3]alazane 
 Unprotonated Protonated  Unprotonated Protonated 

AM1 1.850 3.113  1.833 3.183 
PM3 1.879 2.511  1.885 2.520 
PM6 1.996 3.102  2.027 3.205 
HF/3-21G 2.013 3.247  2.002 3.373 
HF/6-31G(d) 2.065 3.256  2.061 3.363 
MP2/6-31G(d) 2.061 3.255  2.065 3.390 
 

Computed Energies (Eh) of Alazanes 
 

 Bicyclo[3.3.3]alazane  Hexafluorobicyclo[3.3.3]alazane 
 Unprotonated Protonated  Unprotonated Protonated 

AM1 –0.065 28 0.211 33  –0.502 07 –0.178 11 
PM3 –0.062 37 0.252 05  –0.519 55 –0.186 28 
PM6 –0.080 01 0.172 98  –0.630 31 –0.337 50 
HF/3-21G –644.152 20 –644.460 25  –1234.110 89 –1234.374 31 
HF/6-31G(d) –647.665 11 –647.984 50  –1240.793 06 –1241.074 68 
MP2/6-31G(d)// 
  HF/6-31G(d) 

–649.067 55 –649.376 33  –1243.198 66 –1243.473 04 

MP2/6-31G(d) –649.069 39 –649.378 70  –1243.204 64 –1243.479 72 

N
Al

+   H+ N
Al

N
Al

+   H+

F

F

F F F

F
N

Al

F

F

F F F

F
H

H



  11 

 
 Note that the semiempirical levels compute heats of formation, not 
electronic energies, so the proton affinities are computed as the protonated heat 
of formation, minus the neutral heat of formation, minus the heat of formation of 
a bare proton (an experimentally known quantity, 367.2 kcal/mol—but not 
computable in G09 as there are no electrons…) Of course, the same balanced 
chemical equation applies to the ab initio levels, but there the energies are 
electronic energies (not heats of formation) and the electronic energy of a bare 
proton is defined to be zero. In any case, the proton affinities are: 
 

Computed Proton Affinities of Alazanes (kcal/mol) 
 

 Proton Affinity  
 Alazane Fluoroalazane  Fluoro effect 

AM1 –193.6 –163.9  29.7 
PM3 –169.9 –158.1  11.8 
PM6 –208.5 –183.5  25.0 
HF/3-21G –193.3 –165.3  28.0 
HF/6-31G(d) –200.4 –176.7  23.7 
MP2/6-31G(d)// 
  HF/6-31G(d) –193.8 –172.2 

 
21.6 

MP2/6-31G(d) –194.1 –172.6  21.5 
 
 If we assume that the MP2 level (boldface black) is the “best” in terms of 
accuracy, we can color code other results:  boldface green if within 1 kcal/mol of 
MP2, and normal blue if within 5 kcal/mol of MP2. AM1 is quite good for alazane, 
but less good for the fluoro case, so that it does quite poorly in predicting the 
effect of fluorination on acidity. PM3 is very bad, period. PM6 is improved 
compared to PM3, and its protonation error is systematic so that the fluorination 
effect is predicted within 3.5 kcal/mol (about 2.5 pK units at room temperature; 
not bad), which certainly beats the other semiempirical levels. Given that Al was 
probably a very exotic atom at the time AM1 and PM3 were developed (compared 
to PM6), this is not too surprising a result. 
 
 The HF/3-21G level accidentally does very well for alazane, but much less 
well for fluoroalazane. Inclusion of d functions in the basis set causes HF/6-
31G(d) to make more systematically accurate predictions, although absolute 
proton affinities are overestimated by 4-6 kcal/mol. The MP2//HF predictions 
are very good for both the absolute proton affinities and the fluorination effect. 
Given the much, much higher cost of the MP2 optimizations, the single point 
MP2//HF model is clearly an outstanding choice from an energetic standpoint. 
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 As for geometries, the semiempirical AM1 and PM3 models predict the Al–
N dative bonds in the unprotonated species to be quite a bit too short, PM6 and 
HF/3-21G are better (but still too short), and HF/6-31G(d) is quite accurate. PM3 
is a complete disaster for the Al–N distances in the protonated cases (weird), 
AM1 and PM6 predict distances too short by about 0.1 Å (that’s quite a lot), and 
the remaining models are all quite similar. The good agreement between the 
HF/6-31G(d) and MP2/6-31G(d) geometries rationalizes the high quality of the 
MP2//HF single-point predictions. 
 
 Note that AM1 predicts “open” bicyclo geometries that lack an Al–N dative 
bond in the unprotonated species. They’re a few kcal/mol higher than the 
internally bonded geometries. This appears to be an artifact for this 
semiempirical model, as no other level appears to predict such geometries 
(generated by simply deleting the proton on the open protonated geometries) to 
be stationary for the neutral species. 
 
4. Here begins a problem that will carry over to the third problem set and ultimately the 
final exam. Take a look at  
 
 pollux.chem.umn.edu/8021/PES/ 
 
Full credit for this problem is awarded for sensible data. 
 


