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1. In class, we went through Hückel theory as applied to the allyl cation in considerable 
detail (following the textbook). Consider now 1,2- and 1,3-diazacyclobutadiene, where we have 
gone to a 4-membered ring system, and we have replaced two C–H fragments with isoelectronic 
N atoms: (each having an in-plane lone pair). 
 

 
 
 Here are a few experimental facts that you may find useful:  (i) the ionization potential of 
the methyl radical is 9.9 eV, (ii) the ionization potential of the amidogen radical is 10.8 eV, (iii) 
the rotational barrier of ethylene is 60 kcal/mol, (iv) the rotational barrier of formaldimine is 60 
kcal/mol. Now, some tasks/questions:  Solve for the orbital energies and coefficients in the 1,3-
diazabutadiene system. What qualitative difference is there compared to the all-carbon 
cyclobutadiene system? Carry out AM1 calculations for the 1,3-diazabutadiene system and 
visualize the π orbitals. Are they consistent with your Hückel theory predictions? How does the 
AM1 HOMO-LUMO separation compare to that predicted by Hückel theory? Rationalize any 
significant difference. Finally, what is the secular equation for 1,2-diazabutadiene? What makes 
it intractable? Forget about Hückel theory and look at the AM1 computed π orbitals; rationalize 
differences with the 1,3-diazabutadiene case. 
 
 Including an N atom in Hückel theory requires us to do several things. 
First, we must decide what basis function to put on the N atoms; a 2pZ orbital 
seems obvious (just like for a C atom). Next, we need to define overlap matrix 
elements involving this orbital with others; using the same S = 1 approximation 
as with all-C Hückel theory seems sensible. Finally, we need to know Hii and Hij 
for all combinations of N and C atoms as atoms i and j. By analogy to the all-C 
theory, we should make the Hii value equal to the negative of the ionization 
potential (IP) of the corresponding mono-N species, which in this case is the 
amidogen radical, NH2•. Since the –IP of the methyl radical defines α, the data 
above suggest that we should use roughly 1.1α for Hii when i refers to an N atom. 
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As for nearest neighbor interactions, since data suggest that the rotational barrier 
about H2C=NH is equal to that for H2C=CH2, we can evidently continue to use β 
for both HCC and HCN values; we can call the N–N interaction (that occurs in the 
1,2-isomer) δ, but we aren’t given any experimental information about its 
possible value.  
 
 With all these definitions, for 1,3-diazacyclobutadiene the secular equation 
| H – ES | = 0 becomes 
 

 

€ 

1.1α − E β 0 β

β α − E β 0
0 β 1.1α − E β

β 0 β α − E

= 0 (1) 

 
Expanding this determinant requires the use of minors, leading to 
 

 
€ 

1.1α − E( ) •

α − E β 0
β 1.1α − E β

0 β α − E
−β•

β β 0
0 1.1α − E β

β β α − E
+ 0 −β•

β α − E β

0 β 1.1α − E
β 0 β

= 0 (2) 

 
Continuing, using Cramer’s rule 
 

 

€ 

1.1α − E( ) α − E( )2 1.1α − E( ) + 0 + 0 − 0 −β2 α − E( ) −β2 α − E( )[ ]
−β• β α − E( ) 1.1α − E( ) +β3 + 0 − 0 −β3 − 0[ ]
+ 0

−β• β3 +β α − E( ) 1.1α − E( ) + 0 −β3 − 0 − 0[ ] = 0

 (3) 

 
Now expanding and collecting terms 
 

 € 

α − E( )2 1.1α − E( )2 − 4β2 α − E( ) 1.1α − E( ) = 0  (4) 
 
Two roots for this equation are clearly E = α and E = 1.1α. Factoring these out 
from eq. 4, we have 
 

 € 

α − E( ) 1.1α − E( ) − 4β2 = 0  (5) 
 
This is a quadratic in E, which may be more easily solved by expanding to 
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 € 

E 2 − 2.1αE +1.1α2 − 4β2 = 0  (6) 
 
which has solutions 
 

 

€ 

E =
2.1α ± 4.41α2 − 4 1.1α2 − 4β2( )

2

=
2.1α ± 16β2 + 0.01α2

2
≈1.05α ± 2β

 (7) 

 
The final simplification is adequate for qualitative purposes (the term involving α 
in the square root changes the value of the square root by about 2%). If we really 
wanted quantitative accuracy, we could always plug back in the true energy 
values for α and β, but I’ll focus here more on the qualitative aspects. Thus, the 4 
roots, from lowest to highest (remember that α and β are negative quantities) are 
1.05α + 2β, 1.1 α, α, and 1.05α – 2β. 
 
 Now, with those 4 values of E as roots for the secular equation, we can 
determine molecular orbital coefficients. Let’s do the lowest-energy case first. 
The relevant system of linear equations is 
 

€ 

a1 1.1α − 1.05α + 2β( ) •1[ ] + a2 β − 1.05α + 2β( ) • 0[ ] + a3 0 − 1.05α + 2β( ) • 0[ ] + a4 β − 1.05α + 2β( ) • 0[ ] = 0

a1 β − 1.05α + 2β( ) • 0[ ] + a2 α − 1.05α + 2β( ) •1[ ] + a3 β − 1.05α + 2β( ) • 0[ ] + a4 0 − 1.05α + 2β( ) • 0[ ] = 0

a1 0 − 1.05α + 2β( ) • 0[ ] + a2 β − 1.05α + 2β( ) • 0[ ] + a3 1.1α − 1.05α + 2β( ) •1[ ] + a4 β − 1.05α + 2β( ) • 0[ ] = 0

a1 β − 1.05α + 2β( ) • 0[ ] + a2 0 − 1.05α + 2β( ) • 0[ ] + a3 β − 1.05α + 2β( ) • 0[ ] + a4 α − 1.05α + 2β( ) •1[ ] = 0

 (8) 

 
A little ugly. Let’s simplify. 
 

 

€ 

a1 0.05α − 2β( ) + a2β+ a4β = 0

a1β+ a2 −0.05α − 2β( ) + a3β = 0

a2β+ a3 0.05α − 2β( ) + a4β = 0

a1β+ a3β+ a4 −0.05α − 2β( ) = 0

 (9) 

 
Subtraction of the 4th equation from the 2nd gives 
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€ 

a2 −0.05α − 2β( ) − a4 −0.05α − 2β( ) = 0

 (10) 

 
 which establishes that a2 = a4. A similar subtraction of the 3rd equation from the 
1st establishes that a1 = a3. Knowing that, one can then write the 1st equation as 
 

 

€ 

a1 0.05α − 2β( ) + 2a2β = 0  (11)

 

 
In which case we know the ratio of a1 and a2 as 
 

 

€ 

a1
a2

= −
2β

0.05α − 2β( )
=

2β
2β− 0.05α( )  (12)

 

 
Since α is a negative number, the denominator in eq. 12 is larger than the 
numerator, which means that a1 is a bit less than a2; plugging in values (β = 30 
kcal/mol and α = 228.3 kcal/mol), we obtain a1 = 1.23 a2 (and so a3 = 1.23 a4). 
Now, applying the normalization constraint 
 

 
€ 

ai
2

i=1

4

∑ =1 ⇒ a1
2 + (1.23)2a1

2 + a1
2 + (1.23)2a1

2 =1

⇒ a1 = 0.45, a2 = 0.55, a3 = 0.45, a4 = 0.55
 (13) 

 
Thus, the amplitude at the N atoms is increased in the lowest energy orbital 
compared to the C atoms. This result is as we would expect noting that the N is 
more electronegative than C (that’s why its –IP parameter is 10% larger than C). 
 
 Now for the second orbital, with energy determined above as E = 1.1α. The 
system of linear equations becomes 
 

 

€ 

a1 1.1α −1.1α •1[ ] + a2 β −1.1α • 0[ ] + a3 0 −1.1α • 0[ ] + a4 β −1.1α • 0[ ] = 0

a1 β −1.1α • 0[ ] + a2 α −1.1α •1[ ] + a3 β −1.1α • 0[ ] + a4 0 −1.1α • 0[ ] = 0

a1 0 −1.1α • 0[ ] + a2 β −1.1α • 0[ ] + a3 1.1α −1.1α •1[ ] + a4 β −1.1α • 0[ ] = 0

a1 β −1.1α • 0[ ] + a2 0 −1.1α • 0[ ] + a3 β −1.1α • 0[ ] + a4 α −1.1α •1[ ] = 0

 (14) 

 
which simplifies nicely to 
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€ 

a2β+ a4β = 0
a1β+ a2 −0.1α( ) + a3β = 0
a2β+ a4β = 0
a1β+ a3β+ a4 −0.1α( ) = 0

 (15) 

 
Note that the 1st and 3rd equations imply a2 = –a4. But, subtraction of the 4th 
equation from the 2nd equation implies a2 = a4. These two equations can be 
satisfied only if a2 = a4 = 0. In that case, the 2nd and 4th equations require that a1 
= –a3. Normalization requires that a1 = 0.71 and a3 = –0.71. 
 
While the algebra is not shown here, solving for the 3rd MO will go much like the 
first, except that positions are reversed for the orbital. Thus, a1 = a3 = 0 and a2 = 
0.71 and a4 = –0.71. The highest energy MO will lead to a relationship just like 
that in eq. 12 but with a “+” 0.05α in the denominator instead of minus. Thus, the 
coefficients end up reversed compared to MO1:  the contribution of N to π4 
orbital is diminished (which is necessary, actually, to balance for its enhanced 
contribution to π1). Looking at the AM1 orbitals for this system in GaussView, one 
sees: 
 

  
 π3 π4 
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 π1 π2 
 
which agrees perfectly with Hückel theory for orbitals 2 and 3, and it’s difficult to 
say for orbitals 1 and 4, since the amplitudes differ by small margins, but things 
mostly seem OK (inspection of MO coefficients in the AM1 output shows that 
they are 0.51 and 0.49 where with Hückel theory we predicted 0.55 and 0.45—
pretty close). The AM1 HOMO-LUMO gap is about 0.27 a.u. Hückel theory says 
the gap should be 0.1α, or about 1 eV, which is about 0.04 a.u. So, why is the gap 
so small with Hückel theory compared to the calculation? The issue is that in HF 
theory the virtual orbital energy is an estimate of the electron affinity — i.e., the 
energy of the orbital if another electron were to be added to make an anion. 
That’s quite different than the energies for MOs with the same number of 
electrons. The energy between the S0 ground state and the S1 excited state might 
be much closer to the Hückel theory difference, since that involves moving an 
electron from π2 to π3 and costs the energy difference between the two orbitals; 
sure enough, the S1 – S0 difference is computed to be 0.0918 eV (very close to 0.1 
eV) at the CIS level, but we haven’t discussed the CIS level yet, so that will not be 
included in grading. 
 
Now, let’s turn to 1,2-diazacyclobutadiene. With all the above definitions, the 
secular equation | H – ES | = 0 is 
 

 

€ 

1.1α − E δ 0 β

δ 1.1α − E β 0
0 β α − E β

β 0 β α − E

= 0 (16) 

 
Expanding this determinant requires the use of minors, leading to 
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€ 

1.1α − E( ) •

1.1α − E β 0
β α − E β

0 β α − E
− δ •

δ β 0
0 α − E β

β β α − E
+ 0 −β•

δ 1.1α − E β

0 β α − E
β 0 β

= 0 (17) 

 
Continuing, using Cramer’s rule 
 

 

€ 

1.1α − E( ) 1.1α − E( ) α − E( )2 + 0 + 0 − 0 −β2 1.1α − E( ) −β2 α − E( )[ ]
− δ • δ α − E( )2 +β3 + 0 − 0 −β2δ − 0[ ]
+ 0

−β• β2δ +β α − E( ) 1.1α − E( ) + 0 −β3 − 0 − 0[ ] = 0

 (18) 

 
Now expanding and collecting terms 
 

 
€ 

α − E( )2 1.1α − E( )2 −β2 1.1α − E( )2 − 2β2 α − E( ) 1.1α − E( )

− δ2 α − E( )2 − 2δβ3 + δ2β2 +β4 = 0
 (19) 

 
Yuck!! Glad we get to punt and do the calculation with AM1. The orbitals are 
  

 
 π3 π4 
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 π1 π2 
 
Based on the computed orbitals, it appears that 2 C=N bonds are stronger than 1 
C=C and 1 N=N bonds (as π2 is lower in energy than π3). The HOMO-LUMO gap 
here is predicted to be 0.35 a.u.—larger than for the 1,3-isomer. Without plugging 
in a lot of numbers into eq. 19 and solving a complex quartic equation, it’s hard to 
evaluate this quantity using Hückely theory for this system. 
 
 
2. In Problem Set 1, we computed MM3 energies for four conformations of Z-cyclooctene. 
We will now compare the force field predictions to various levels of molecular orbital theory. 
Thus, for each of the four conformations, compute relative energies at the following levels and 
summarize your results: AM1, PM3, PM6, HF/6-31G(d), HF/6-31G(d), CCSD(T)/6-
31G(d)//HF/6-31G(d), MP2/6-311G(2df,2p)//HF/6-31G(d), and finally MP2/6-31G(d) (no 
double slash…) Comment on variations between the models and any interesting 
price/performance issues. At the HF/6-31G(d) level, compute frequencies and thermal 
contributions to enthalpy and free energy therefrom. By how much do these thermal 
contributions cause ΔH and ΔG to differ from ΔE? Given your various data, how might you 
define an optimal composite estimate of computed enthalpy (hint: the CCSD(T) output includes 
some intermediate results that may be useful)? How do the most expensive models compare with 
the (really, really fast) force field? 
 
 Note that while it is usually a good idea to use information from a lower level of 
theory to make more efficient a subsequent calculation, this is not true if the lower level of 
theory is ill suited to the problem. Thus, if you plan to read geometries or wave functions from 
checkpoint files for this exercise, you should first visualize the structures to ensure that they have 
not unexpectedly deviated enormously from the MM3 reference structures. 
 
The following table has results computed at various levels of electronic structure 
theory. Because the semiempirical levels are quite bad at maintaining the rough 
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structures predicted by MM3, I started the AM1, PM3, PM6, and HF calculations 
from the MM3 structures. For the MP2 optimization, I began from the HF 
structures. 
 
Table 1.  Electronic or thermal energies (a.u.) computed for Z-cyclooctene 
isomers. 
 

 Conformer 1 Conformer 2 Conformer 3 Conformer 4 
AM1 -0.029 10 -0.024 29 -0.025 87 -0.025 33 
PM3 -0.015 90 -0.012 40 -0.012 99 -0.011 34 
PM6 -0.015 99 -0.012 63 -0.013 35 -0.012 67 
HF/6-31G(d) -311.074 69 -311.071 43 -311.069 55 -311.064 13 
  ΔH298 0.227 36 0.227 61 0.227 52 0.227 46 
  ΔG298 0.188 17 0.188 13 0.187 74 0.186 92 
MP2/6-31G(d)// 
   HF/6-31G(d) -312.111 89 -312.108 30 -312.105 12 -312.100 41 
CCSD(T)/6-31G(d)// 
   HF/6-31G(d) -312.234 82 -312.231 55 -312.228 72 -312.224 14 
MP2/6-311G(2df,2p)// 
   HF/6-31G(d) -312.506 19 -312.502 86 -312.499 60 -312.494 68 
MP2/6-31G(d) -312.113 98 -312.110 33 -312.107 11 -312.102 58 
Composite H298 -312.403 84 -312.400 55 -312.397 67 -312.393 11 
Composite G298 -312.443 03 -312.440 02 -312.437 45 -312.433 65 
 
where, the composite values are computed as 
 

€ 

Xcomp = CCSD(T)/6 - 31G(d)//HF/6 - 31G(d)

+ MP2/6 - 311G(2df,2p)//HF/6 - 31G(d) – MP2/6 - 31G(d)//HF/6 - 31G(d)[ ] basis set incompleteness
+ MP2/6 - 31G(d) –  MP2/6 - 31G(d)//HF/6 - 31G(d)[ ] geometry optimization
+ ΔX X is H or G

 (20) 

 
and, now, in terms of relative energy 
 
Table 2. Energies (kcal/mol) computed for Z-cyclooctene isomers relative to 
conformer 1. 
 

 Conformer 1 Conformer 2 Conformer 3 Conformer 4 
AM1 0.0 3.0 2.0 2.4 
PM3 0.0 2.2 1.8 2.9 
PM6 0.0 2.1 1.7 2.1 
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HF/6-31G(d) 0.0 2.0 3.2 6.6 
  ΔH 0.0 0.2 0.1 0.1 
  ΔG 0.0 0.0 -0.3 -0.8 
MP2/6-31G(d)// 
   HF/6-31G(d) 0.0 2.3 4.3 7.2 
CCSD(T)/6-31G(d)// 
   HF/6-31G(d) 0.0 2.1 3.8 6.7 
MP2/6-311G(2df,2p)// 
   HF/6-31G(d) 0.0 2.1 4.1 7.2 
MP2/6-31G(d) 0.0 2.3 4.3 7.2 
Composite H 0.0 2.1 3.9 6.7 
Composite G 0.0 1.9 3.5 5.9 
MM3 0.0 1.6 3.5 7.0 
 
Without going into enormous detail, the semiempirical levels are obviously 
howlingly bad for this conformational analysis, and if anything PM6 is worse 
than PM3 (disappointing). Perhaps surprisingly, HF/6-31G(d) is as accurate as 
any of the more complete models, although composite H298 is arguably the most 
physical approach, and thus would be viewed with much more confidence in the 
absence of knowing the right answer. Note, of course, that MM3 costs pretty 
much zero and works wonderfully. 
 
The thermal contributions to enthalpy don’t vary much over the different 
conformers, but there is a significant entropy (and thus free energy) gain 
predicted for conformer 4. This conformer has its two lowest frequency normal 
modes (torsions) at lower energy than the other conformers, and this increases 
its partition function accordingly. 
 
 
3. Here begins a problem that will carry over to the third problem set and ultimately the 
final exam. Take a look at  
 
 pollux.chem.umn.edu/8021/PES/ 
 
 Full credit for this problem simply consists of entering sensible data.  

  


