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1.  Molecular Mechanics and Semiempirical Molecular Orbital Theory (100 points) 
 
We have read two papers this semester addressing the development of new parameters 
for a (semi)empirical model:  Nicholas et al. presented zeolite force-field development 
and Anders et al. presented the extension of PM3 to include lithium. For this problem, 
compare and contrast parameter development in a molecular mechanics model vs. a 
semiempirical molecular orbital theory model. Thus, what similarities and differences are 
there in terms of numbers and kinds of parameters needed, means for 
determination/optimization of such parameters, kinds of validation data, etc.? 
 
Extension of a molecular mechanics (MM) or semiempirical molecular orbital 
(SEMO) model fundamentally implies the addition of a new atom type to the 
model. One difference between MM and SEMO models is that the former may 
have many different atomic types for a given atomic number (e.g., different kinds 
of oxygen atoms typed by functional group) while SEMO models identify atoms 
simply by atomic number. 
 
Generally speaking, far more parameters are needed to extend an MM model 
than to extend a SEMO model. This follows from the means by which energy is 
computed. An MM model needs to compute stretching, bending, torsional, and 
non-bonded energies, and these terms involve the specification of atom-type-pair 
specific parameters (for bond stretching and non-bonded interactions), atom-
type-triple specific parameters (for angle bending), and atom-type-quadruple 
specific parameters (for torsions). Thus, each new atom in the force field 
introduces a number of new parameters in principle proportional to the 4th 
power of the number of total atom types. Modern SEMO models, on the other 
hand, are typically defined by only a handful of atom-specific parameters (on the 
order of 10) so that each new atom introduced is no more, nor less, work than any 
other. The nature of the SEMO parameters includes, inter alia, same-center one-
electron integrals, different-center one-electron integrals, same-center two 
electron integrals, orbital exponents for the computation of overlap. 
 
In any exercise of parameter optimization, one must define an error function 
(involving a quantitative weighted comparison of computed to target data over 
some specified data set). In the case of MM models, the data available tend to be 
limited to those most closely tied to the potential energy surface (PES). Thus, 
structural data (e.g., bond lengths, angles, etc.) and vibrational frequencies 
(related to the steepness of PES coordinates are useful. Energetic data are 
typically restricted to conformational energy changes, as complications arise 
when comparing molecules not composed of identical atom types. In SEMO 
models, on the other hand, their quantum mechanical nature permits expansion 
of validation data to include any expectation value of the wave function, e.g., the 
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dipole moment. In addition, the energetic analysis can go beyond conformational 
comparisons to include atomization energies (typically compared to experimental 
atomization enthalpies or, after addition of atomic heats of formation, to 
molecular heats of formation) and transition-state energies. Furthermore, the 
SEMO model can consider the new atom in different charge or spin states 
(computing ionization potentials, for instance), which is not the case for an MM 
model. 
 
The sources of the validation data for both MM and SEMO parameterization 
efforts tend to be the same. Experimental data are ideal (when their accuracy is 
assured) and supplemental data derived from high-level electronic structure 
calculations can be useful to supplement gaps in experimental data. The time 
required to carry out parameterization is likely to be greater for the SEMO model 
than for the MM model, only because repeated quantum mechanical calculations 
will be required for the former while the latter requires only very fast force field 
calculations. 
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2.  Ab Initio Hartree-Fock (HF) and post-Hartree-Fock Theories (50 points) 
 
a. Why must the HF self-consistent-field equations be solved iteratively? 
 
HF theory assumes each electron to interact with the average field of all of the 
other electrons. That field is computed, electron-by-electron, from the electron 
density created by the occupied molecular orbitals. However, the purpose of 
carrying out the HF SCF equations is to determine the occupied MOs. Thus, one 
must first guess a set of MOs (or, equivalently put, a density matrix), solve the 
SCF equations for a new set, and proceed iteratively to convergence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. What basis functions are there on a F atom and a H atom in the 6-31G(d) basis set? 
 
The H atom has only valence 1s functions. There are two, one (tight) formed of 3 
contracted primitive gaussians and one (loose) that is a single (uncontracted) 
gaussian. The F atom has a core 1s function formed of 6 contracted primitive 
gaussians and two sets of valence 2s, 2px, 2py, and 2pz functions, one set (tight) 
having each basis function formed of 3 contracted primitive gaussians and one 
set (loose) having each basis function as a single (uncontracted) gaussian. Finally, 
the F atom has a single d function on it, which includes the 6 cartesian d-type 
functions. 
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c. Explain, ideally including any necessary equation(s), the following statement:  An 
atomic orbital basis function is to a molecular orbital as a Slater determinant is to a 
configuration interaction (CI) wave function. 
 
Both molecular orbitals (MOs) and CI wave functions can be expressed as linear 
combinations of basis functions. In the former case, the basis functions are 
typically atomic orbital (AO) type functions (e.g., those defining a basis set like 6-
31G(d)) while in the latter case the basis functions are Slater determinants. 
Hartree-Fock theory provides a means to optimize the coefficients multiplying 
the basis functions for MOs, and CI theory provides a means to optimize the 
coefficients multiplying the Slater determinants for the CI wave function. In 
equation form, we have 
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φ j  is the jth MO formed as a linear combination of the AO basis functions 
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ϕi having coefficients aij (where i runs over the total number of basis functions in 
the basis set) and   
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Ψk  is the kth CI wave function formed as a linear combination 
of Slater determinants including the HF case and other Slater determinants that 
are themselves defined relative to the HF one by moving one or more electrons 
from occupied orbitals a, b, etc. to virtual orbitals i, j, etc. (so-called single, 
double, etc., excitations) up to a limit of including all possible excited 
determinants (which is dictated by the total number of electrons and the total 
number of available virtual orbitals). 
 
d. What is spin contamination? 
 
In unrestricted calculations (where orbitals are optimized separately for α and β 
electrons), the resulting Slater determinant need not have an expectation value 
for the S2 operator that is equal to a pure spin-state eigenvalue (e.g., 0 for a 
singlet, 0.75 for a doublet, S(S+1) in general, where S is the maximal allowed 
value of Sz given the number of unpaired electrons). When the optimized wave 
function is not a pure spin state, we say that it is “contaminated” by other spin 
states (usually higher ones). Thus, we can think of the resulting wave function as 
a linear combination of different spin states, with undesired spin states having 
coefficients whose magnitude dictates <S2>. This affects expectation values for all 
other operators, too, e.g., energy, dipole moment, geometry, and in pathological 
instances can lead to very poor predictions with respect to the desired “pure” spin 
state. 


