Previous Contents Next

Oligomeric Rods of Alkyl- and Hydridogallium Imides

Kormos, B. L.; Jegier, J. A.; Ewbank, P.; Pernisz, U.; Young, V. G., Jr.; Cramer, C. J.; Gladfelter, W. G.
J. Am. Chem. Soc. 2005, 127, 1493.

Reaction of [RGa(NMe2)2]2, where R = Me, Et, Bu and Hx, with ammonia at 150 oC in an autoclave produced insoluble white powders formulated as oligomers of [RGaNH]n. The analogous reaction between NH3 and MeGa[N(SiMe3)2]2 at low temperature (< 25 oC) formed an isolable intermediate, [MeGa(m-NH2)N(SiMe3)2]2, that was characterized using single crystal X-ray diffraction. Infrared spectroscopy and X-ray diffraction of the oligomers were consistent with a rod-like structure comprised of six-membered, [RGaNH]3 rings stacked perpendicular to the long axis of the rod. The method of synthesis, formula and diffraction results suggested a structural similarity between the alkyl [RGaNH]n, and previously reported hydride, [HGaNH]n. The structural and electronic properties of rods having the general formula H3[(HXYH)3]nH3 (XY = GaN, GeC; n=1-9) were investigated using density functional theory. Atomic electronegativity differences between the Group 13/15 and 14/14 systems were found to play important roles in the geometrical structures of the two rods and also caused significant differences in the electronic structures. Energetically, it was found to be increasingly favorable to add additional cyclotrigallazane rings to the GaN rods, while for the GeC rods there was a roughly constant energy cost associated with each additional ring. The electric dipole moments of the GaN rods increased substantially with length; in the GeC rods charge separation occurred to a much smaller extent and had the opposite polarization as that found in GaN. In addition, increased dipole moments correlated with smaller electronic excitation energies, as predicted by time-dependent density functional theory. All of the powders exhibited luminescence in the visible spectrum at room temperature. Structure observed in the photoluminescence spectra of [HGaNH]n and [MeGaNH]n were interpreted as arising from rods of different length.

To request a copy of this article, send e-mail to the Research Reports Coordinator at the Minnesota Supercomputer Institute (requests@msi.umn.edu). Please provide a mailing address and specify that you would like UMSI report 2005/33.