Quantum Chemical Characterization of the Bonding of N-Heterocyclic Carbenes to Cp2MI Compounds [M = Ce(III), U(III)]
Gagliardi, L.; Cramer, C. J.
Inorg. Chem.
2006, 45, 9442.
The binding of N-heterocyclic carbenes to Ce(III) and U(III) compounds is characterized by quantum chemical methods. Density functional methods are in qualitative agreement with experiment that binding to U(III) is more favorable than to Ce(III); after correcting for basis-set superposition error, quantitative agreement with experiment is achieved with a multireference second-order perturbation theory approach accounting for relativistic effects. The small computed (and observed) preference derives from a combination of several small effects, including differences in electronic binding energies, rovibrational partition functions, and solvation free energies. Prospects for ligand modification to improve the differentiation between lanthanides and actinides are discussed based on computational predictions.
To request a copy of this article, send e-mail to the Research Reports Coordinator at the Minnesota Supercomputer Institute (requests@msi.umn.edu). Please provide a mailing address and specify that you would like UMSI report 2006/226.