NWChem: Past, Present, and Future
Aprà, E.; Bylaska, E. J.; de Jong, W. A.; Govind, N.; Kowalski, K.;
Straatsma, T. P.; Valiev, M.; van Dam, H. J. J.; Alexeev, Y.; Anchell, J.;
Anisimov, V.; Aquino, F.; Atta-Fynn, R.; Autschbach, J.; Bauman, N. P.;
Bernholdt, D. E.; Bhaskaran-Nair, K.; Bogatko, S.; Borowski, P.; Boschen,
J.; Brabec, J.; Cauët, E.; Chen, Y.; Chuev, G. N.; Cramer, C. J.; Daily,
J.; Deegan, M. J. O.; Dunning, T. H., Jr.; Dupuis, M.; Dyall, K. G.; Fann,
G. I.; Fischer, S. A.; Fonari, A.; Früchtl, H.; Gagliardi, L.; Garza, J.;
Gawande, N.; Ghosh, S.; Glaesemann, K.; Götz, A. W.; Hammond, J.; Helms,
V.; Hermes, E.; Hirata, S.; Jacquelin, M.; Jensen, L.; Johnson, B. G.;
Jonsson, H.; Kendall, R. A.; Klemm, M.; Kobayashi, R.; Krishnamoorthy, S.;
Krishnan, M.; Lin, Z.; Lins, R. D.; Littlefield, R. J.; Logsdail, A.;
Lopata, K.; Ma, W.; Marenich, A.; Martin del Campo, J.; Mejia-Rodriguez,
D.; Moore, J. E.; Mullin, J. M.; Nichols, J. A.; Nichols, P.; Nieplocha,
J.; Otero de la Roza, A.; Palmer, B.; Panyala, A.; Pirojsirikul, T.; Peng,
B.; Peverati, R.; Pittner, J.; Pollack, L.; Richard, R. M.; Sadayappan, P.;
Silverstein, D.; Smith, D. M. A.; Soares, T. A.; Song, D.; Swart, M.;
Taylor, H. L.; Thomas, G.; Tipparaju, V.; Truhlar, D. G.; Tsemekhman, K.;
Van Voorhis, T.; Vázquez-Mayagoitia, Á.; Verma, P.; Villa, O.; Vishnu,
A.; Vogiatizis, K. D.; Wang, D.; Weare, J. H.; Williamson, M. J.; Windus,
T. L.; Wolinski, K.; Wong, A. T.; Wu, Q.; Yang, C.; Yu, Q.; Zacharias, M.;
Zhang, Z.; Zhao, Y.; Harrison, R. J.
J. Chem. Phys.
2020, 152, 184102
(doi:10.1063/5.0004997).
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide the experimental effort and for prediction of chemical and materials properties. In this regard, a special role has been played by electronic structure packages where complex chemical and materials processes can be modeled using first-principle-driven methodologies. Over the last few decades, the rapid development of computing technologies and tremendous increase in computational power has offered a unique chance to study complex chemical transformations using sophisticated and predictive many-body techniques to describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, a critical role has been played by novel parallel algorithms capable of taking advantage of computational resources to address polynomial scaling of electronic structure methods. NWChem was among the first electronic structure codes that focused on delivering scalable performance for electronic structure simulations. In this paper, we briefly review the NWChem suite of computational codes including its history, design principles, parallel tools, current capabilities, outreach and outlook.