Previous Contents Next

Singlet-Triplet Splittings and 1,2-Hydrogen Shift Barriers for Methylphenylborenide, Methylphenylcarbene, and Methylphenylnitrenium in the Gas Phase and Solution. What a Difference a Charge Makes

Cramer, C. J.; Truhlar, D. G.; Falvey, D. E.
J. Am. Chem. Soc. 1997, 119, 12338.

In the isoelectronic series methylphenylborenide, methylphenylcarbene, and methylphenylnitrenium, fundamental differences are predicted for singlet state geometries, singlet-triplet state splittings, barriers to singlet 1,2-hydrogen migration, and sensitivity of 1,2-hydrogen migration to solvent effects in n-heptane and acetonitrile. We conclude that isoelectronic analogies are dangerous for systems having different formal charges, and that the interaction of the divalent center with a conjugating substituent is very sensitive to the electron donating or withdrawing nature (and power) of the hypovalent atom. Solvent effects on the singlet-triplet splitting result from static polarity differences whereas the solvent effects on 1,2-hydrogen migration result primarily from polarizability differences. For the experimentally characterized carbene case, extensive comparison of calculated and measured results is provided.

To request a copy of this article, send e-mail to the Research Reports Coordinator at the Minnesota Supercomputer Institute (requests@msi.umn.edu). Please provide a mailing address and specify that you would like UMSI report 97/165.