Due in class, Monday November 20, 2023

Detailed Mechanism Provide a detailed mechanism [i.e., explicitly show (using curly arrows) EVERY intermediate, formal charge (where relevant), equilibrium, and bond-making and -breaking step] to account for the following transformations:
a) The dehydration of the allylic alcohol $\mathbf{1}$ to the aldehyde $\mathbf{2}$. (hints: the dotted carbon in the starting material appears in the product as indicated; a [3.3]-sigmatropic rearrangement is involved.)

b) The formation of the [5.3.0]-bicycle $\mathbf{4}$ from the enone $\mathbf{3 a}$ and the allene $\mathbf{3 b}$. (hints: recall that a silyl substituent can stabilize β-carbenium ions and that the TMS group is not vicinal to the allylic methyl group in the product.)

c) The oxidation of the ketone $\mathbf{5}$ with selenium dioxide to form the 1,2-diketone $\mathbf{6}$.

Other Problems

1. a) Draw the structure of the (major) endo and (minor) exo products for the reaction between the diene 7 and the dienophile 8 in a Diels-Alder reaction.

b) Show the relative energies of the molecular orbitals for the π-systems of the diene and the dienophile and indicate which are primarily involved in interaction in the transition state for the cycloaddition (orbital overlap).
c) How would the HOMO/LUMO gap for this reaction change if the methoxy substituent on the diene was changed to a methyl group?
d) How would the HOMO/LUMO gap for this reaction change if the methyl substituent on the dienophile was changed to an aldehyde?
2. Account for the following three, substrate-dependent, product ratios. The differences here highlight a powerful strategy known as relay ring-closing metathesis (RRCM).

9
a $R^{1}=H ; R^{2}=H$
b $\mathrm{R}^{1}=\boldsymbol{X} ; \mathrm{R}^{2}=\mathrm{H}$
c $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\boldsymbol{X}$

Grubbs

10
(left-to-right)
from
product ratios

$9 \boldsymbol{a}$	~ 1.0	to	1.0
$\mathbf{9 b}$	26	to	1.0
$\mathbf{9} \boldsymbol{c}$	1.0	to	45

3. Reaxys

a) The Ullmann coupling can be used to cross coupling a phenol with an aryl halide. How many such reactions in Reaxys use as the cuprous ion source CuI ? $\mathrm{CuBr} ? \mathrm{CuCl}$?
b) How many acyclic 1,4-disubstituted butadiene derivatives having one E- and one Z-alkene geometry are in the Reaxys database?

