Due in class, Monday September 18, 2023
Detailed Mechanism Provide a detailed mechanism [i.e., explicitly show (using curly arrows) EVERY intermediate, formal charge (where relevant), equilibrium, and bond-making and -breaking step, including each proton transfer] to account for reactions \mathbf{a} and \mathbf{b}.

In most cases, mechanisms of reactions proceeding under acid (or cationic) conditions involve only neutral or positively charged intermediates,* and mechanisms of reactions proceeding under basic (or anionic) conditions involve only neutral or negatively charged intermediates.*
(* those species derived from the organic starting material. Of course, since charge is neither created nor destroyed, there is always a counterion of opposite charge present to balance the cationic or anionic charged intermediate.)
(a) The Dieckmann condensation of compound $\mathbf{1}$ to form enone 2.

1
i) $\mathrm{EtONa}, \mathrm{EtOH}, \Delta, 3 \mathrm{~h}$
ii) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$ quench

2
(b) The formation of carbamate $\mathbf{4}$ by first treating carboxylic acid $\mathbf{3}$ with diphenylphosphoryl azide (DPPA) then phenylmethanol (aka benzyl alcohol) in refluxing toluene. What is the name of the functional group formed after the first step? (Hint: This the Curtius rearrangement K\&C pp 116-117.)

Other Problems (Stereochemistry)

1. Indicate whether the indicated protons, H_{a} and H_{b}, in the following molecules are homotopic, diastereotopic, or enantiotopic.
a)

b)

e)

c)

7
d)

8

9
2. Draw the most stable conformer of the following compounds.

10

11

12
3. Draw a 3D representation of a conformation of 1-phenylhexane that contains one (and only one) synpentane ($1,7-\mathrm{H}, \mathrm{H}-$) interaction.

4. Indicate (circle the word) whether the two stereoisomers for the following pairs of structures are the same, a pair of enantiomers, or a pair of diastereomers. If they are diastereomers, indicate the number of stereogenic centers that are different in the two structures. Ignore differences in conformation.
a)

13a
b)

c)

15a
d)

16a

13b

14b

16b
same enantiomers
diastereomers
\# of diff. stereocenters?
\qquad
diastereomers
\# of diff. stereocenters?
\qquad

15b
same enantiomers

diastereomers
\# of diff. stereocenters?
\qquad

