Chemistry 43	21/8321	Midterm Examination I 6:00 – 8:00 PM		October 11, 2023
Organic Synthesis				T. R. Hoye
Name:	ANSWERS	Part I	<u> </u>	
			Part II	<u> </u>
Clearly print your name above.			Part III	<u> </u>
There are 100 points and four questions on the exam.			Part IV	/ 44
Answer all que exam pages.	estions directly i	Total	<u>/100</u>	
You may not use books notes phones computers etc.				

You may not use books, notes, phones, computers, etc.

Our diamond lattice is attached as a final page for your use, should you like.

I. (16 points) For parts a-c indicate (circle the word) whether the two structures are the *same*, a pair of *enantiomers*, or a pair of *diastereomers*. *If* they are diastereomers, indicate the number of stereogenic centers that are different in the two structures. Ignore differences in conformation. For part d indicate (circle the word) whether the indicated pairs of atoms or groups are *homotopic*, *diastereotopic*, or *enantiotopic*.

II. (20 points) Decide whether each of the following equilibria lies predominantly to the left or to the right as a solution in an organic solvent. Circle the species on the side that is more stable (i.e., lower in free energy and more highly populated at equilibrium).

- **IV.** (44 pts) Provide a *detailed mechanism* to account for each of the following four reactions. Show *ALL* intermediates, equilibria, and bond-making and -breaking steps. For species that have more than one significant resonance contributor, you only need to show one of them.
- a) (10) The isomerization (i.e., there is no byproduct formed) of the cis-fused iodolactone A to the more stable, trans-fused diastereomer B. There is no water in this reaction (i.e., anhydrous HI is the Bronsted acid used to catalyze the process). [*hints:* recall the iodolactonization reaction and that iodonium ions can form reversibly when iodine engages an alkene.]

b) (12) The TMSOTf-catalyzed, low-temperature ketalization of cyclohexenone (C) to produce D. [*hints:* recall that a TMS group is often a surrogate for a hydrogen atom and there are no protic (i.e., Bronsted) acids present in the reaction mixture.]

c)

d) (6) The isomerization (an epimerization) of acetal G to the more stable acetal H.

e) (6) Draw the most stable **conformation** of i) the starting material **G** and of ii) the product **H** in the above reaction.

••• end of exam •••

