6:00 - 8:00 PM

Organic Synthesis

Name: ANSWERS
Clearly print your name above.
There are 100 points and four questions on the exam.
Answer all questions directly in the space provided on the five exam pages.

Part I	$/ 16$
Part II	
Part III	120
Part IV	144

You may not use books, notes, phones, computers, etc.
Our diamond lattice is attached as a final page for your use, should you like.
I. (16 points) For parts a-c indicate (circle the word) whether the two structures are the same, a pair of enantiomers, or a pair of diastereomers. If they are diastereomers, indicate the number of stereogenic centers that are different in the two structures. Ignore differences in conformation. For part d indicate (circle the word) whether the indicated pairs of atoms or groups are homotopic, diastereotopic, or enantiotopic.
a)
4

vs.

Total /100
II. (20 points) Decide whether each of the following equilibria lies predominantly to the left or to the right as a solution in an organic solvent. Circle the species on the side that is more stable (i.e., lower in free energy and more highly populated at equilibrium).

\rightleftharpoons

\rightleftharpoons

\rightleftharpoons

$$
\rightleftharpoons
$$

\rightleftharpoons

III. (20 points) Provide the structure of the major product in each of the reactions a)-e).
a)

b)

$$
\xrightarrow[\substack{\text { 2. i) } \mathrm{LiAlH}_{4} \\ \text { ii) } \mathrm{H}_{2} \mathrm{SO}_{4} \\ \mathrm{H}_{2} \mathrm{O} \\ \text { workup } \\ \text { ii) }}]{\substack{\text { i. } \\ \text { wtI }}}
$$

c)

d)

e)

IV. (44 pts) Provide a detailed mechanism to account for each of the following four reactions. Show $A L L$ intermediates, equilibria, and bond-making and -breaking steps. For species that have more than one significant resonance contributor, you only need to show one of them.
a) (10) The isomerization (i.e., there is no byproduct formed) of the cis-fused iodolactone \mathbf{A} to the more stable, trans-fused diastereomer \mathbf{B}. There is no water in this reaction (i.e., anhydrous HI is the Bronsted acid used to catalyze the process). [hints: recall the iodolactonization reaction and that iodonium ions can form reversibly when iodine engages an alkene.]

b) (12) The TMSOTf-catalyzed, low-temperature ketalization of cyclohexenone (C) to produce \mathbf{D}. [hints: recall that a TMS group is often a surrogate for a hydrogen atom and there are no protic (i.e., Bronsted) acids present in the reaction mixture.]

c) (10) The isomerization of the β-diketone \mathbf{E} to the β-ketoester \mathbf{F}.

E

H/ $-\mathrm{H}^{+}$

F

d) (6) The isomerization (an epimerization) of acetal \mathbf{G} to the more stable acetal \mathbf{H}.

G

H

e) (6) Draw the most stable conformation of i) the starting material \mathbf{G} and of ii) the product \mathbf{H} in the above reaction.

G

H

