NAME	 	 	
ID#			

ORGANIC CHEMISTRY I (2301)

9:30 - 10:20 am, July 27, 2015

Exam 3

If you want to pick this exam up on Tuesday in class (in public), please check the box on the right:	
If you do not check the box, I will not bring your exam to class on Tuesday, and you will need to pick up your exam in private from Chemistry department staff in 115 Smith beginning Wednesday, July 29 th . E are not picked up within two weeks will be disposed of.	xams that

A periodic table is attached to the back of this exam as an aid. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

Right now, write your name and student ID number at the top of this page. When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

NAME _____

Total Score: / 100

1. (9 pts) Identify each of the transformations below as a reduction, an oxidation, or neither. Circle only one answer for each transformation.

$$\bigcap$$
H \longrightarrow OH

or

OXIDATION

or

NEITHER

$$OH$$
 OH

REDUCTION

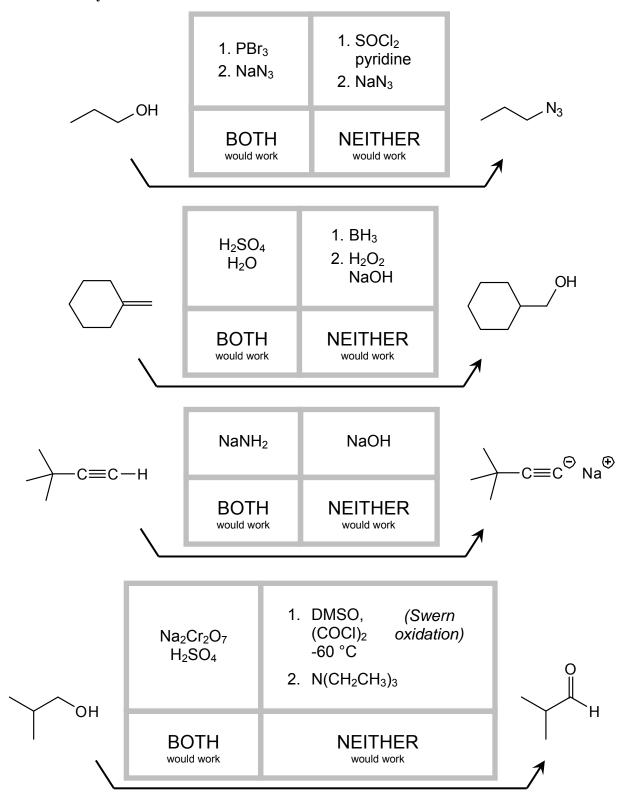
OXIDATION

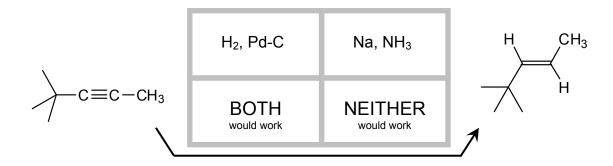
or

NEITHER

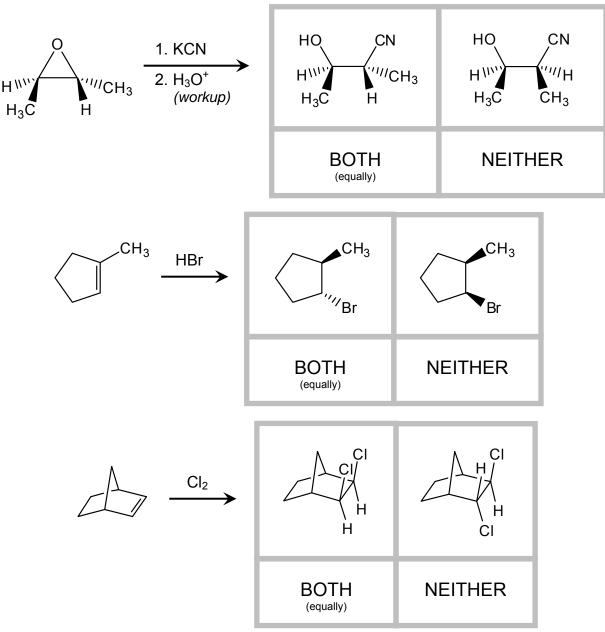
$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3

REDUCTION

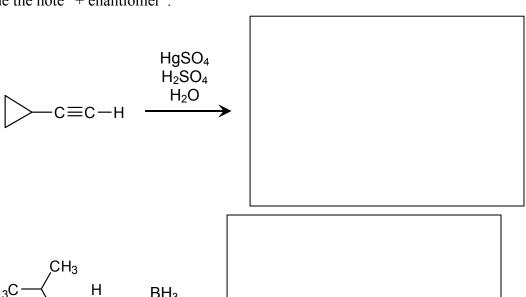

or


OXIDATION

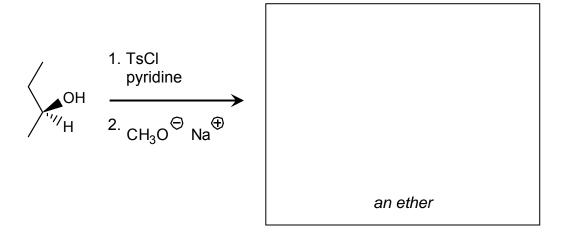
or

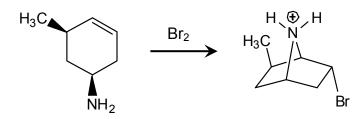

NEITHER

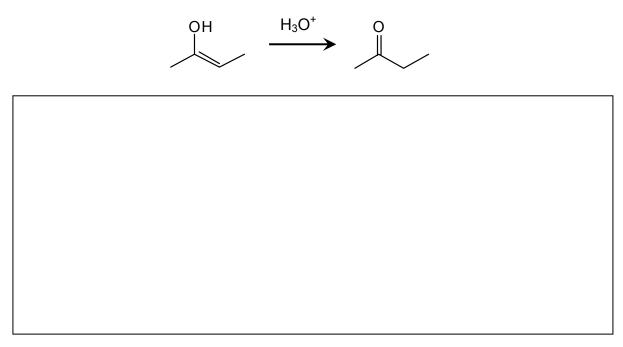
2. (20 pts) Each of the reactions below is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, circle those conditions. If both sets of conditions would accomplish the reaction, circle "BOTH". If neither set of reaction conditions would succeed, circle "NEITHER". Circle one answer only.



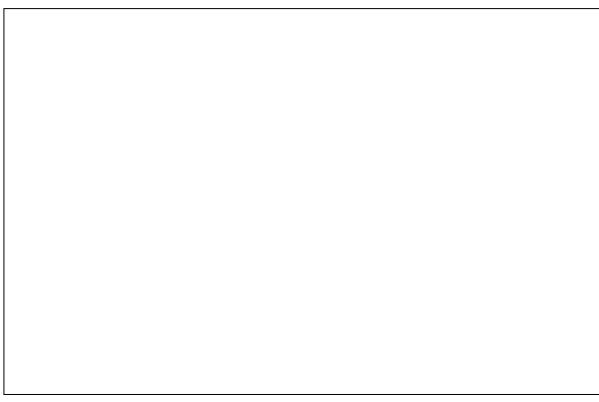
3. (12 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced <u>equally</u>, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". **Circle one answer only.**


4. (25 pts) For each of the reactions below, **fill in the empty box corresponding to reactants or products**. For reactions that you expect to yield multiple products, give the major product. For reactions that yield multiple enantiomers, draw only one enantiomer in the box, and include the note "+ enantiomer".


$$CH_3CH_2-C\equiv C-H$$


HBr

(excess)


- 5. (18 pts) For each of the reactions shown below, draw a mechanism that explains how the product is generated from the starting material. In your answer, make sure that you:
 - Draw each step of the mechanism separately;
 - Use "electron pushing" to show where the electrons in each step go;
 - Use only the molecules that you are given; do not invoke reactants or solvents that aren't in the problem.

6. (16 pts) For the starting materials and product shown below, **propose a multistep synthesis**. In addition to the molecules shown, you can use any reagents and reactions we've learned about in class. You might discover multiple answers to this problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route—we will give you partial credit where we can.

$$H-C\equiv C-H$$
 and Br OCH_3

18 8A 2 Te Helium 4.00	10 Neon 20.18	18 Argon	39.95	 % ∑	Krypton 83.80	24	Xenon 131.29	% 2	Radon (222)			71
17 A 7	9 Fluorine 19.00	17 C	35.45	સ્ જે	Bromine 79.90	- 23	lodine 126.90	85 At	Astatine (210)			70
16 6A	0,											69
15 5A	7 N itrogen 14.01	15 P Phosphorus	30.97	33 As	Arsenic 74.92	51 5	Antimony 121.76	83 	Bismuth 208.98			89
4 4 4 A	6 Carbon 12.01	14 S	28.09	Ge 35	Germanium 72.61	20	118.71	85 Pb	Lead 207.2			67
3A 3A	5 B Boron 10.81	13 Al Aluminum	26.98	31 Ga	Gallium 69.72	49 2	Indium 114.82	= 84	Thallium 204.38			99
		12	2B	® Z	Zinc 65.39	8 ⁴ C	Cadmium 112.41	8 2	Mercury 200.59			65
		Ξ	1 18	ور 20	Copper 63.55	74 <	Silver 107.87	79 Au	Gold 196.97			64
		10		8 Z	Nickel 58.69	46 D	Palladium 106.42	82 T	Platinum 195.08			63
	oer Ibol ne	nic mass*	I L								Meitnerium (268)	69
Key	Atomic number Element symbol	Average atomic mass 8		56 Te	Iron 55.85	44	Ruthenium 101.07	92 Os	Osmium 190.23	108 Hs	Hassium (269)	61
<u> </u>	+++	 	7B	25 Mn	Š	£ 4 ⊢	<u>ĕ</u>		Rhenium 186.21	107 Bh	Bohrium (264)	9
	11— Sodium -	9	6B	გ ე	Chromium 52.00	45	Molybdenum 95.94	⁷ 8	Tungsten 183.84	106 Sg	Seaborgium (266)	29
		rO	5B	~ 53	Vanadium 50.94	4 Z	Niobium 92.91	2 23	Tantalum 180.95	105 Db	Dubnium (262)	228
		4		Z ;		4 ,	Zirconium 91.22	2 2	Hafnium 178.49	² ₹	Rutherfordium (261)	
			38	Sc	Scandium 44.96	e >	Yttrium 88.91	57 La	Lanthanum 138.91	88 Ac	Actinium (227)	
2 S	Be Beryllium	12 Mg	24.31	Ca 50	Calcium 40.08	ڻ %	SO .		Barium 137.33	88 Ba		
14 14 Hydrogen 1.01	3 Lithium 6.94	Nodiun Sodiun	22.99	<u>ნ</u> 🕶	Potassium 39.10	•	ш_				Francium (223)	
-	N	က		4			വ	Q	0			

* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.

28	29	09	61	62	63	64	65	99	29	89	69	20	71
ပီ	P	PZ	Pm	Sm	Eu	<u> </u>	Д	٥	운	щ	٦	Υb	ב
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holminm	Erbium	Thulium	Ytterbium	Lutetium
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
06	91	92	63	94	92	96	26	86	66	100	101	102	103
드	Ра	>	dN	Pu	Am	CH	BK	℧	Es	FB	Md	٥ N	۲
Thorium	Protactinium		Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Copyright © 2008 California Department of Education