NAME _____

ID # _____

ORGANIC CHEMISTRY I (2301)

9:05 - 9:55 am, December 10, 2014

Exam 4

You will be able to pick up your graded Exam 4 from Chemistry department staff in 115 Smith beginning Thursday, December 11th at 3 PM. Exams that are not picked up within two weeks will be disposed of.

A periodic table, and tables of typical NMR chemical shifts, coupling constants, and IR frequencies are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

Right now, write your name and student ID number at the top of this page. When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

1. (12 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced <u>equally</u>, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". **Circle one answer only.**

- 2. (22 pts)
 - a. Draw a mechanism (using "electron pushing") for the radical reaction shown below. Draw each mechanistic step explicitly, in its own box, and label each step as an initiation or propagation step. (Do not draw any termination steps in this part.) Use only the molecules shown in the problem; don't invoke generic species.

b. In the box on the right, draw the mechanism of a termination step that you would expect for the reaction on the previous page.	termination mechanism:
--	------------------------

- 3. (38 pts) The spectra on page 6 correspond to a pure molecule; high-resolution mass spectrometry determined an exact mass of 110.0732 amu for the highest-mass (parent, M^+) peak in the MS spectrum, which corresponds to a molecular formula of $C_7H_{10}O$.
 - a. Considering only the features in the IR spectrum, what functional groups might the unknown molecule possibly have? Circle all answers that apply.

b. What is the structure of the molecule? In the box at right, draw molecule's your structure, including all hydrogens. Then, the ¹H considering NMR spectrum, circle each set of equivalent H's, and label each circle with its unique $^{1}\mathrm{H}$ NMR chemical shift. (You do not need label coupling to constants J.)

your molecule (C ₇ H ₁₀ O)			

c.	Is the ¹ H resonance at $\delta = 1.4$ ppm the farthest up	pfield	or	downfield	?
d.	Are the protons at $\delta = 1.4$ ppm the most shielded	d or	C	leshielded	?
e.	Do the spins at $\delta = 1.4$ ppm precess ("wobble") the	fastes	: 01	slowest	?

M⁺

 $(C_7H_{10}O^+)$

- f. The parent mass peak at m/z = 110corresponds to a radical cation (\mathbf{M}^{+}) that is generated by removing one electron from the original, neutral molecule M. In the box on the right, draw M⁺⁺; re-draw the structure you drew in part (b), but specifically indicate which electron is removed by drawing the molecule with one less electron. Feel free to omit the hydrogens you drew in part (b).
- g. The parent ion fragments to form a daughter ion with m/z = 95. In the

fragmentation to m/z = 95:

IR Spectrum:

4. (28 pts) When acetophenone is combined with acetyl chloride and a Lewis acid catalyst—in a reaction that you will learn about in CHEM 2302—three different diacetylbenzenes could be generated as products. Normally this reaction doesn't work, but in this problem, we will imagine that you are a chemist that has performed this reaction, and that you have isolated one of these three products. You have performed ¹H and ¹³C NMR spectra on this product, shown on page 9. In the questions that follow, you will decide which of the three products you have isolated.

a. How many resonances would you expect to see in the ¹H NMR of each of these products? In other words, how many inequivalent sets of protons are there in each structure? Write your answers in the boxes below.

b. Each proton highlighted in the structures above could be split by neighboring protons. What kind of multiplet should each proton produce in a ¹H NMR spectrum? (Assume that there is no long-range coupling for the circled proton. But there might be for the others!) Use the abbreviations on the chart on the right, and write your answers in the boxes above.

abbreviations for multiplets									
s: d: t:	singlet doublet triplet								
q: dd:	quartet doublet of doublets								

- c. ¹H and ¹³C spectra for the isolated molecule are shown on the next page. Which of the three products did you isolate? On the unfinished skeleton in the box at right, indicate your choice by drawing in any appropriate functional groups, <u>as well as all hydrogens</u>. Then,
 - Circle each group of equivalent H's;
 - Assign a ¹H chemical shift (δ) to each circled group, within 0.1 ppm;
- Connect any pair of coupled, inequivalent groups of H's with a double-headed arrow, and then label that arrow with the corresponding coupling constant (*J*).

Your answer to (c):

d. The ¹³C NMR spectrum of the isolated product showed 6 peaks, which appear in three distinct regions of the spectrum. I've labeled these regions **A**, **B** and **C** on the ¹³C spectrum on the next page. As you did above, re-draw your proposed product structure on the right (though this time you can omit H's). Then, in each empty box, write the letter **A**, **B**, or **C** to indicate the region of the ¹³C NMR you would expect to find that carbon resonance. **Fill all boxes.**

¹H NMR Chemical Shifts

Compound Type	Chemical Shift (ppm)	Compound Type	Chemical Shift (ppm)
Alcohol		Amide	
R-0-H	1-5	0	7595
R-C-O-	3.4-4.0	R ^C N-H I	7.5-0.5
Aldehyde O		Amine R-N-H	0.5-5.0
к ^с н	9-10	ų į	
Alkane	0.9-2.0	R-Ċ-N I I	2.3-3.0
RCH ₃	~0.9		
R ₂ CH ₂	~1.3	Aromatic compound	
R ₃ CH	~1.7		6 5 9
Alkene Alkene C = C $p^2 C-H$	4.5-6.0	C-H benzylic	1.5-2.5
$C = C$ $Sp^{3} C-H$ $Sp^{3} C-H$	1.5-2.5	Carbonyl compound	
Alkyl Halide		$R \xrightarrow{C} H sp^3 C-H on$ $R \xrightarrow{C} the \alpha$ carbon	2.0-2.5
R-Ċ-F I	4.0-4.5	Carboxylic acid	
R-C-CI I	3.0-4.0	о " R ^{´C} `он	10-12
H R-C-Br I	2.7-4.0	Ether H	
R-Ċ-I I	2.2-4.0	R-Ċ-O-R I	3.4-4.0
Alkyne			
—с≡с-н	~2.5		

¹³C NMR Chemical Shifts

Carbon Type	Structure	Chemical Shift (ppm)
Alkyl, <i>sp</i> ³ hybridized C	— —с–н 	5-45
Alkyl, <i>sp</i> ³ hybridized C bonded to N, O, or X		30-80
Alkynyl, sp hybridized C	—c≡c—	65-100
Alkenyl, sp ² hybridized C	C=C	100-140
Aryl, <i>sp</i> ² hybridized C	C-	120-150
Carbonyl C) C=0	160-210

Typical ¹H-¹H Coupling Constants (*J*)

IR Absorption Frequencies

Bond	Functional group	Wavenumber (cm ⁻¹)	Comment
0-н			
	• ROH	3600–3200	broad, strong
	RCOOH	3500-2500	very broad, strong
N – H			
	BNH ₂	3500-3300	two peaks
	• R ₂ NH	3500-3300	one peak
	• RCONH ₂ , RCONHR	3400–3200	one or two peaks; N – H bending also observed at 1640 cm ⁻¹
С-Н			
	• C _{sp} – H	3300	sharp, often strong
	• C _{sp²} -H	3150-3000	medium
	• C _{sp³} -H	3000–2850	strong
	• C _{sp²} -H of RCHO	2830–2700	one or two peaks
C≡C		2250	medium
C≡N		2250	medium
C=0			strong
	RCOCI	1800	
	 (RCO)₂O 	1800, 1760	two peaks
	RCOOR	1745–1735	increasing \widetilde{v} with decreasing ring size
	RCHO	1730	
	• R ₂ CO	1715	increasing ữ with decreasing ring size
	 R₂CO, conjugated 	1680	
	RCOOH	1710	
	 RCONH₂, RCONHR, RCONR₂ 	1680–1630	increasing ⊽ with decreasing ring size
c=c			
	Alkene	1650	medium
	Arene	1600, 1500	medium
C=N		1650	medium

California Standards Test

Chemistry Reference Sheet

Periodic Table of the Elements

18 88 2 He	Helium 4.00	10 Neon Neon	18	Ar Argon 39.95	36	K rypton	83.80	54 X	Xenon 131.29	86	Вn	Radon (222)			71	Lutetium 174.97	103	_	Lawrencium (262)					
	17 7A	9 Fluorine	17	Chlorine 35.45	35	Br Bromine	79.90	-	lodine 126.90	85	At	Astatine (210)			02 V	Ytterbium 173.04	102	No	Nobelium (259)					
	16 6A	8 Oxygen 16.00	16	Sulfur 32.07	34	Selenium	78.96	1 25	Tellurium 127.60	84	Ро	Polonium (209)			₆₉ E	Thulium 168.93	101	Md	Mendelevium (258)					
	15 5A	7 Nitrogen	15	Phosphorus 30.97	33	AS Arsenic	74.92	51 Ch	Antimony 121.76	83	Bi	Bismuth 208.98			68 F	Erbium 167.26	100	Еm	Fermium (257)					
	14 4A	6 Carbon	14	Silicon 28.09	32	Ge Germanium	72.61	0 20	Tin 118.71	82	Ъb	Lead 207.2			67 H	Holmium 164.93	66	Es	Einsteinium (252)					
	13 3A	5 Boron 10.01	13	Aluminum 26.98	31	Ga llium	69.72	49	Indium 114.82	81	F	Thallium 204.38			99 D	Dysprosium 162.50	98	ັບ	Californium (251)					
			-	12 2B	30	Z inc Zinc	65.39	89 Z	Cadmium 112.41	80	Hg	Mercury 200.59			95 1	Terbium 158.93	67	В¥	Berkelium (247)					
				- 1 1 1 1	29	Copper	63.55	47 A	Silver 107.87	62	Au	Gold 196.97			9 ⁶⁴	Gadolinium 157.25	96	C	Curium (247)					
		ber Ibol Te		10	28	Nickel	58.69	46 0	Palladium 106.42	78	£	Platinum 195.08			е В Ш	Europium 151.96	95	Am	Americium (243)					
			bol Dol	er bol	er bol	er ool e iic mass*	bol e iic mass*	ber Ibol ne nic mass*	6 – 88 –	27	Cobalt Cobalt	58.93	42 D	Rhodium 102.91	77	L	Iridium 192.22	109	MIT Meitnerium (268)	62 Sm	Samarium 150.36	94	Pu	Plutonium (244)
	ey	mic numb ment sym	erade atom	ο ο ο ο	26	Fe Iron	55.85	44 0	Ruthenium 101.07	76	Os	Osmium 190.23	108	HS Hassium (269)	D ⁶¹	Promethium (145)	93	dN	Neptunium (237)					
	¥	Ato		7B	25	Mn Manganese	54.94	4 43	Technetium (98)	75	Re	Rhenium 186.21	107	Bohrium (264)	09 09	Neodymium 144.24	92		Uranium 238.03					
		-11- Sodiur	22.96	9 B 09	24	Chromium	52.00	42 M0	Molybdenum 95.94	74	≥	Tungsten 183.84	106	Seaborgium (266)	5 9 7	Praseodymium 140.91	91	Pa	Protactinium 231.04					
									5 B	23	Vanadium	50.94	41 N5	Niobium 92.91	73	Та	Tantalum 180.95	105	Dubnium (262)	و 28 28	Cerium 140.12	90	Ч	Thorium 232.04
					4 4 B	22	Titanium	47.87	40 7	Zirconium 91.22	72	Ħ	Hafnium 178.49	104	Rutherfordium (261)		nen							
				ი 8	21	Scandium	44.96	ଚ୍ଚ >	Yttrium 88.91	57	La	Lanthanum 138.91	68	Actinium (227)		entheses, th	nass of the							
	2 2A	4 Beryllium	12	Magnesium 24.31	20	Calcium Calcium	40.08	88 0	Strontium 87.62	56	Ba	Barium 137.33	88	Radium (226)		er is in pare	he atomic n	isotope.						
- 4 - I	Hydrogen 1.01	3 Lithium	11	Sodium 22.99	19	Potassium	39.10	37 87	Rubidium 85.47	55	Cs	Cesium 132.91	87	Francium (223)		If this numb	it refers to t most stable							
Ŧ	-	N		3		4		1	ŝ		G)		\sim		*								

Copyright © 2008 California Department of Education