NAME \_\_\_\_\_

ID # \_\_\_\_\_

## ORGANIC CHEMISTRY I (CHEM 2301)

## 9:30 – 10:20 am, August 6, 2014

### Exam 4

You will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Monday, August 12<sup>th</sup> at 1 PM. Exams that are not picked up within two weeks will be disposed of.

A periodic table and tables of typical NMR chemical shifts, IR frequencies and atomic isotope compositions are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

Right now, write your name and student ID number at the top of this page. When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

|          | N    | AME      |       |  |
|----------|------|----------|-------|--|
| Scoring: | 1/35 | 2        | / 65  |  |
|          | Tota | l Score: | / 100 |  |

1. (35 pts) When the starting material below is exposed to the conditions of free-radical bromination, four monobrominated products (**A-D**) are isolated.



a. In the box below, draw a mechanism of two propagation steps that explains how product A would be made from a combination of starting material, Br<sub>2</sub>, and Br• radical. Because you have been supplied with Br•, you do <u>not</u> need to draw an initiation step.





b. How would the four molecules A-D relate in terms of product ratio? Which product would be most prevalent, and which would be least prevalent? In the boxes below, rank the four molecules (by letter) from highest to lowest product ratio. If any two molecules would be observed at equal ratios, circle the "≈" sign between those two boxes.



- c. The free-radical chain reaction that generates products A-D is slowed by <u>termination</u> reactions that remove radicals from the reaction cycle. In the box on the right, draw one termination product that would be observed for the reaction above, *other than*  $Br_2$  and products A-D. (So, do <u>not</u> draw  $Br_2$  or any of the products A-D above as an answer to this part.)
- d. If the reaction on the previous page were a chlorination instead of a bromination—using Cl<sub>2</sub> instead of Br<sub>2</sub>—would your preferred product be made

| a termination product |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |

| more        |   | less        | or   | with the same | 2        |
|-------------|---|-------------|------|---------------|----------|
| selectively | , | selectively | , 01 | selectivity   | <i>!</i> |

e. If the starting material is halogenated with *N*-bromosuccinimide instead of Br<sub>2</sub>, only two of the four products **A-D** would be formed. Which two?



2. (65 pts) Radical chlorination of ethyl acetate  $(C_4H_8O_2)$ , the starting material on the right) gives predominantly one product. This product was isolated and characterized by NMR and IR spectroscopy and mass spectrometry; the spectra



of this product are shown on the following pages. High-resolution mass spectrometry determined an exact mass of 122.0135 amu for one of the highest-mass (parent,  $M^+$ ) peaks in the MS spectrum, which corresponds to a molecular formula of  $C_4H_7ClO_2$ .

a. Based on the two peaks labeled in the IR spectrum below, what functional groups would you expect the unknown molecule to have? **Circle all answers that apply.** 



b. What part of this IR spectrum is the "fingerprint region"? In the box below, color/shade in the range of frequencies that correspond to the "fingerprint region".



- d. Compared to mass spec, does IR require MORE or LESS material?
- e. What is the structure of the product? In the box below, draw the molecule's structure, <u>including all hydrogens</u>. Then, considering the <sup>1</sup>H NMR spectrum below,
  - Circle each group of equivalent H's;
  - Assign a <sup>1</sup>H chemical shift ( $\delta$ ) to each circled group, within 0.1 ppm;
  - Connect any pair of coupled, inequivalent groups of H's with a double-headed arrow,





f. The <sup>13</sup>C NMR spectrum of the product is shown below, with two peaks labeled **A** and **B**. Which carbons in the product do these peaks correspond to? On the unfinished molecular skeleton on the right, draw the chlorine atom that I've omitted from the product. Then, write the letters "**A**" and "**B**" in the boxes of the carbon atoms that are responsible for the two labeled peaks. *Leave two of the boxes empty*.



g. Some of the peaks in the electron-ionization (EI) mass spectrum (shown above), including the parent peak, are accompanied by a smaller peak that is 2 atomic mass units (amu) higher in mass. (In other words, some peaks with mass *m* are accompanied by another peak, about 1/3 as tall, with mass m+2.) Why? Please be brief; you can probably answer this question in less than 10 words.

| Explain why: |  |  |
|--------------|--|--|
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |

- h. The parent mass peak at m/z = 122corresponds to a radical cation ( $\mathbf{M}^{++}$ ) that is generated by removing one electron from the original, neutral molecule **M**. In the box on the right, draw  $\mathbf{M}^{++}$ ; re-draw the structure you drew in part (e), but specifically indicate which electron is removed by drawing the molecule with one less electron. *Feel free to omit the hydrogens you drew in part (e)*.
- i. The parent ion fragments to form a daughter ion with m/z = 77. What is the structure of this daughter ion? You do not need to do electron pushing to answer this part—just draw the cation.
- j. The parent ion also fragments to form a daughter ion with mass 73 amu (not observed), which then fragments further to give an ion with m/z = 29. In the box below, draw a mechanism (using "arrow pushing")



fragment cation with m/z = 77

that shows these two sequential fragmentation steps, starting with your answer to part (h).

Mechanism that explains m/z = 29 peak

| Frequency (cm <sup>-1</sup> ) | Functiona                         | l Group            | Comments                                                                                                                                             |
|-------------------------------|-----------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3300                          | alcohol<br>amine, amide<br>alkyne | 0—H<br>N—H<br>≡C—H | always broad<br>may be broad, sharp, or broad with spikes<br>always sharp, usually strong                                                            |
| 3000                          | alkane                            | -c H               | just below 3000 cm <sup>-1</sup>                                                                                                                     |
|                               | alkene                            | =C < H             | just above 3000 cm <sup>-1</sup>                                                                                                                     |
|                               | acid                              | О—Н                | very broad                                                                                                                                           |
| 2200                          | alkyne -<br>nitrile               | -C≡C-<br>-C≡N      | just below 2200 cm <sup>-1</sup><br>just above 2200 cm <sup>-1</sup>                                                                                 |
| 1710<br>(very strong)         | carbonyl                          | )⊂=0               | ketones, aldehydes, acids<br>esters higher, about 1735 cm <sup>-1</sup><br>conjugation lowers frequency<br>amides lower, about 1650 cm <sup>-1</sup> |
| 1660                          | alkene                            | >c=c<              | conjugation lowers frequency<br>aromatic C=C about 1600 cm <sup>-1</sup>                                                                             |
|                               | imine                             | C=N                | stronger than C=C                                                                                                                                    |
|                               | amide                             | )⊂=0               | stronger than C=C (see above)                                                                                                                        |

# Summary of IR Stretching Frequencies

Ethers, esters, and alcohols also show C—O stretching between 1000 and 1200 cm<sup>-1</sup>.

#### Isotopic Composition of Some Common Elements

| Element                                                                             | I                                                                                                                                                      | M+                                                                     | N                                                     | l+1                  | M+2                                                                        |                                |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|----------------------|----------------------------------------------------------------------------|--------------------------------|--|--|
| hydrogen<br>carbon<br>nitrogen<br>oxygen<br>sulfur<br>chlorine<br>bromine<br>iodine | <sup>1</sup> H<br><sup>12</sup> C<br><sup>14</sup> N<br><sup>16</sup> O<br><sup>32</sup> S<br><sup>35</sup> Cl<br><sup>79</sup> Br<br><sup>127</sup> I | 100.0%<br>98.9%<br>99.6%<br>99.8%<br>95.0%<br>75.5%<br>50.5%<br>100.0% | <sup>13</sup> C<br><sup>15</sup> N<br><sup>33</sup> S | 1.1%<br>0.4%<br>0.8% | <sup>18</sup> O<br><sup>34</sup> S<br><sup>37</sup> Cl<br><sup>81</sup> Br | 0.2%<br>4.2%<br>24.5%<br>49.5% |  |  |

<sup>1</sup>H NMR Absorptions

| Compound type                   | Chemical shift (ppm) |
|---------------------------------|----------------------|
| Alcohol                         |                      |
| R-O-H                           | 1–5                  |
| H<br>T                          |                      |
| R-Ċ-O                           | 3.4–4.0              |
| Aldehyde                        |                      |
| Q                               |                      |
| R <sup>−C</sup> <sup>−</sup> H  | 9–10                 |
| Alkane                          | 0.9–2.0              |
| RCH <sub>3</sub>                | ~0.9                 |
| R <sub>2</sub> CH <sub>2</sub>  | ~1.3                 |
| R <sub>3</sub> CH               | ~1.7                 |
| Alkene                          |                      |
| C=C sp <sup>2</sup> C-H         | 4.5–6.0              |
| ∖ с−н                           |                      |
| C=C allylic sp <sup>3</sup> C-H | 1.5–2.5              |
| Alkyl halide                    |                      |
| H<br>R-Ċ-F                      | 4.0-4.5              |
| H<br>R-C-CI                     | 3.0-4.0              |
| H<br>R-C-Br<br>I                | 2.7–4.0              |
| H<br>R-C-I                      | 2.2–4.0              |
| Alkyne                          |                      |
|                                 | -25                  |

| Compound type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemical shif |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Amide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| R <sup>∕C</sup> N−H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5-8.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Amine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| R-N-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5-5.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| B-C-N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3-3.0       |
| Ť Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0 0.0       |
| Aromatic compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 5 9         |
| Sp-C-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5-6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| C-H benzylic sp° C-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5-2.5       |
| 2 should be shou |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| C H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| $\wedge$ $sp^3$ C-H on the $\alpha$ carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0-2.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Carboxylic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-12         |
| ROH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 12         |
| Ether H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| R-C-O-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.4-4.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |

| Carbon type                                              | Structure | Chemical shift (ppm) |
|----------------------------------------------------------|-----------|----------------------|
| Alkyl, sp <sup>3</sup> hybridized C                      | —с–н      | 5–45                 |
| Alkyl, sp <sup>3</sup> hybridized C bonded to N, O, or X |           | 30-80                |
| Alkynyl, sp hybridized C                                 | —C≡C—     | 65–100               |
| Alkenyl, sp <sup>2</sup> hybridized C                    | )c=c      | 100–140              |
| Aryl, sp <sup>2</sup> hybridized C                       | <u> </u>  | 120–150              |
| Carbonyl C                                               | )c=o      | 160-210              |

California Standards Test

Chemistry Reference Sheet

Periodic Table of the Elements

| 18<br>88<br>2<br><b>He</b> | Helium<br>4.00   | 10<br>Neon<br>Neon   | 18         | <b>Ar</b><br>Argon<br>39.95 | 36 | <b>K</b> rypton        | 83.80 | 54<br>X         | Xenon<br>131.29     | 86    | Вn      | Radon<br>(222)      |     |                               | 71                     | Lutetium<br>174.97     | 103                           | <b>_</b>    | Lawrencium<br>(262)    |    |    |                    |
|----------------------------|------------------|----------------------|------------|-----------------------------|----|------------------------|-------|-----------------|---------------------|-------|---------|---------------------|-----|-------------------------------|------------------------|------------------------|-------------------------------|-------------|------------------------|----|----|--------------------|
|                            | 17<br>7A         | 9<br>Fluorine        | 17         | Chlorine<br>35.45           | 35 | <b>Br</b><br>Bromine   | 79.90 | <b>-</b>        | lodine<br>126.90    | 85    | At      | Astatine<br>(210)   |     |                               | 02<br>V                | Ytterbium<br>173.04    | 102                           | No          | Nobelium<br>(259)      |    |    |                    |
|                            | 16<br>6A         | 8<br>Oxygen<br>16.00 | 16         | Sulfur<br>32.07             | 34 | Selenium               | 78.96 | <b>1</b><br>25  | Tellurium<br>127.60 | 84    | Ро      | Polonium<br>(209)   |     |                               | <sub>69</sub> <b>E</b> | Thulium<br>168.93      | 101                           | Md          | Mendelevium<br>(258)   |    |    |                    |
|                            | 15<br>5A         | 7<br>Nitrogen        | 15         | Phosphorus<br>30.97         | 33 | <b>AS</b><br>Arsenic   | 74.92 | 51<br><b>Ch</b> | Antimony<br>121.76  | 83    | Bi      | Bismuth<br>208.98   |     |                               | 68<br><b>F</b>         | Erbium<br>167.26       | 100                           | Еm          | Fermium<br>(257)       |    |    |                    |
|                            | 14<br>4A         | 6<br>Carbon          | 14         | Silicon<br>28.09            | 32 | <b>Ge</b><br>Germanium | 72.61 | <b>0</b> 20     | Tin<br>118.71       | 82    | Ъb      | Lead<br>207.2       |     |                               | 67<br>H                | Holmium<br>164.93      | 66                            | Es          | Einsteinium<br>(252)   |    |    |                    |
|                            | 13<br>3A         | 5<br>Boron<br>10.01  | 13         | Aluminum<br>26.98           | 31 | <b>Ga</b> llium        | 69.72 | 49              | Indium<br>114.82    | 81    | F       | Thallium<br>204.38  |     |                               | 99<br><b>D</b>         | Dysprosium<br>162.50   | 98                            | ັບ          | Californium<br>(251)   |    |    |                    |
|                            |                  |                      | -          | 12<br>2B                    | 30 | <b>Z</b> inc<br>Zinc   | 65.39 | 89 <b>Z</b>     | Cadmium<br>112.41   | 80    | Hg      | Mercury<br>200.59   |     |                               | 95<br><b>1</b>         | Terbium<br>158.93      | 67                            | В¥          | Berkelium<br>(247)     |    |    |                    |
|                            |                  |                      |            | -<br>1<br>1<br>1<br>1       | 29 | Copper                 | 63.55 | 47<br><b>A</b>  | Silver<br>107.87    | 62    | Au      | Gold<br>196.97      |     |                               | 9 <sup>64</sup>        | Gadolinium<br>157.25   | 96                            | C           | Curium<br>(247)        |    |    |                    |
|                            |                  | 9                    | 10         | 10                          | 10 | 10                     | 10    | 28              | Nickel              | 58.69 | 46<br>0 | Palladium<br>106.42 | 78  | £                             | Platinum<br>195.08     |                        |                               | е<br>В<br>Ш | Europium<br>151.96     | 95 | Am | Americium<br>(243) |
|                            |                  | er<br>bol            | uic mass*  | 6 – 88 –                    | 27 | Cobalt<br>Cobalt       | 58.93 | 42<br><b>D</b>  | Rhodium<br>102.91   | 77    | L       | Iridium<br>192.22   | 109 | MIT<br>Meitnerium<br>(268)    | 62<br><b>Sm</b>        | Samarium<br>150.36     | 94                            | Pu          | Plutonium<br>(244)     |    |    |                    |
|                            | ey               | mic numb<br>ment sym | erade atom | ο<br>ο<br>ο<br>ο            | 26 | <b>Fe</b><br>Iron      | 55.85 | 44<br>0         | Ruthenium<br>101.07 | 76    | Os      | Osmium<br>190.23    | 108 | <b>HS</b><br>Hassium<br>(269) | <b>D</b> <sup>61</sup> | Promethium<br>(145)    | 93                            | dN          | Neptunium<br>(237)     |    |    |                    |
|                            | ¥                | Ato                  |            | 7B                          | 25 | <b>Mn</b><br>Manganese | 54.94 | <b>4</b> 43     | Technetium<br>(98)  | 75    | Re      | Rhenium<br>186.21   | 107 | Bohrium<br>(264)              | 09<br>09               | Neodymium<br>144.24    | 92                            |             | Uranium<br>238.03      |    |    |                    |
|                            |                  | -11-<br>Sodiur       | 22.96      | 9 B<br>09                   | 24 | Chromium               | 52.00 | 42<br>M0        | Molybdenum<br>95.94 | 74    | ≥       | Tungsten<br>183.84  | 106 | Seaborgium<br>(266)           | <b>5</b> 9<br><b>7</b> | Praseodymium<br>140.91 | 91                            | Pa          | Protactinium<br>231.04 |    |    |                    |
|                            |                  |                      |            | 5<br>B                      | 23 | Vanadium               | 50.94 | 41<br>N5        | Niobium<br>92.91    | 73    | Та      | Tantalum<br>180.95  | 105 | Dubnium<br>(262)              | و<br>28<br>28          | Cerium<br>140.12       | 90                            | Ч           | Thorium<br>232.04      |    |    |                    |
|                            |                  |                      |            | 4 4<br>B                    | 22 | Titanium               | 47.87 | 40<br>7         | Zirconium<br>91.22  | 72    | Ħ       | Hafnium<br>178.49   | 104 | Rutherfordium<br>(261)        |                        | nen                    |                               |             |                        |    |    |                    |
|                            |                  |                      |            | ი 8                         | 21 | <b>Scandium</b>        | 44.96 | ଚ୍ଚ <b>&gt;</b> | Yttrium<br>88.91    | 57    | La      | Lanthanum<br>138.91 | 68  | Actinium<br>(227)             |                        | entheses, th           | nass of the                   |             |                        |    |    |                    |
|                            | 2<br>2A          | 4<br>Beryllium       | 12         | Magnesium<br>24.31          | 20 | Calcium<br>Calcium     | 40.08 | 88 <b>0</b>     | Strontium<br>87.62  | 56    | Ba      | Barium<br>137.33    | 88  | Radium<br>(226)               |                        | er is in pare          | he atomic n                   | isotope.    |                        |    |    |                    |
| - <sup>+</sup> - <b>I</b>  | Hydrogen<br>1.01 | 3<br>Lithium         | 11         | Sodium<br>22.99             | 19 | Potassium              | 39.10 | 37<br>0 37      | Rubidium<br>85.47   | 55    | Cs      | Cesium<br>132.91    | 87  | Francium<br>(223)             |                        | If this numb           | it refers to t<br>most stable |             |                        |    |    |                    |
| Ŧ                          | -                | N                    |            | 3                           |    | 4                      |       | 1               | ŝ                   |       | G       | )                   |     | $\sim$                        |                        | *                      |                               |             |                        |    |    |                    |

Copyright © 2008 California Department of Education