NAME	·	 	 	
ID#				

ORGANIC CHEMISTRY I (2301)

9:30 – 10:20 am, August 5, 2015

Exam 4

You will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Monday, August 11th at 1 PM. Exams that are not picked up within two weeks will be disposed of.

A periodic table and tables of typical NMR chemical shifts and IR frequencies are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

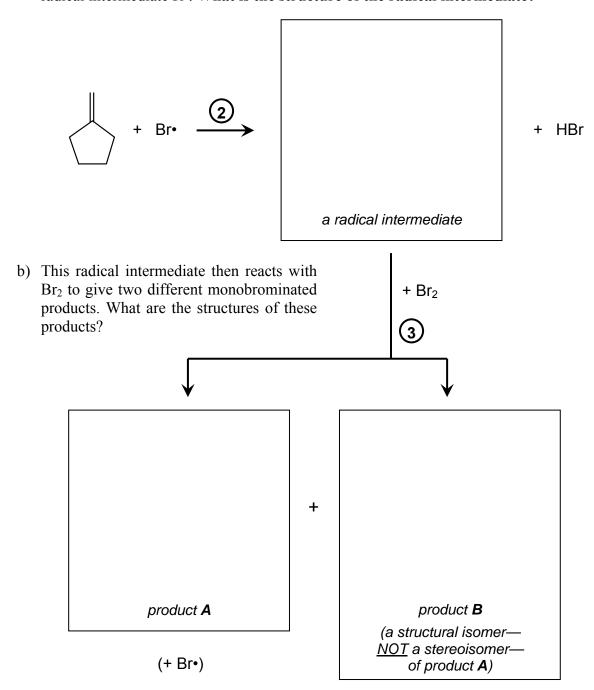
Right now, write your name and student ID number at the top of this page. When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

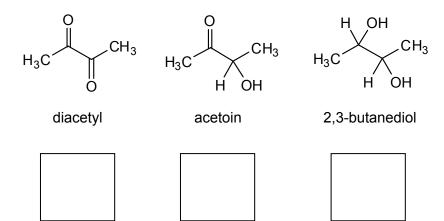
Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

NAME					

Scoring:

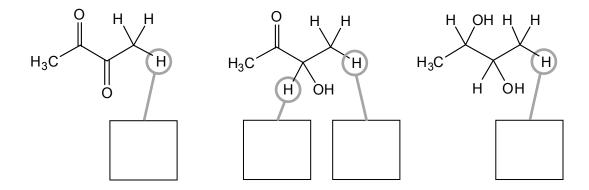

2. _____/ 15

4. / 36


Total Score: _____/ 100

1. (12 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced equally, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". Circle one answer only.

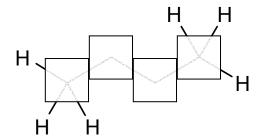
- 2. (15 pts) The free-radical chain mechanism of radical bromination has two propagation steps, which we have in lecture numbered (2) and (3):
 - abstraction of an H from R-H by Br•; and
 - (3) reaction of R• with Br₂ to form R-Br.
 - a) Radical bromination of ethylenecyclopentane goes predominantly through a single radical intermediate R•. What is the structure of the radical intermediate?


- 3. (37 pts) In the early 2000's, the National Institute for Occupational Safety and Health (NIOSH) began documenting lung disease in employees of companies that packaged microwave popcorn. NIOSH investigators narrowed the possible causative agent down to three substances: diacetyl, acetoin, and 2,3-butanediol, all of which are used in artificial butter flavoring and were inhaled in large amounts at that time by the employees. In this problem, you will identify one of the three compounds isolated from a popcorn packaging plant—in this case, not the inhaled toxin—based on its ¹H and ¹³C NMR spectra.
 - a. How many resonances would you expect to see in the ¹H NMR of each of these additives? In other words, how many inequivalent sets of protons are there in each structure? Write your answers in the boxes on the right.

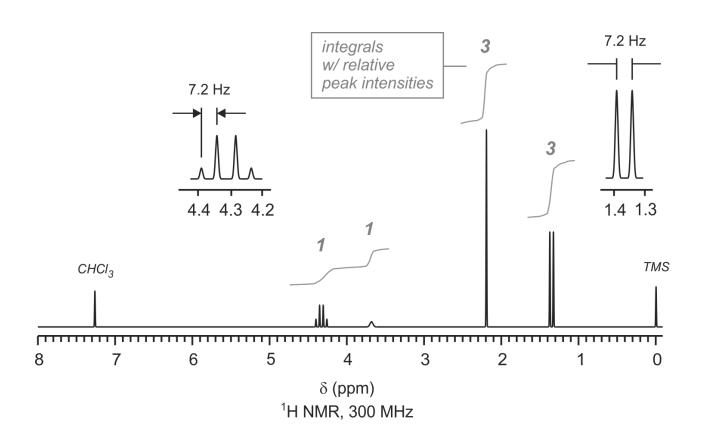
¹H NMR resonances expected

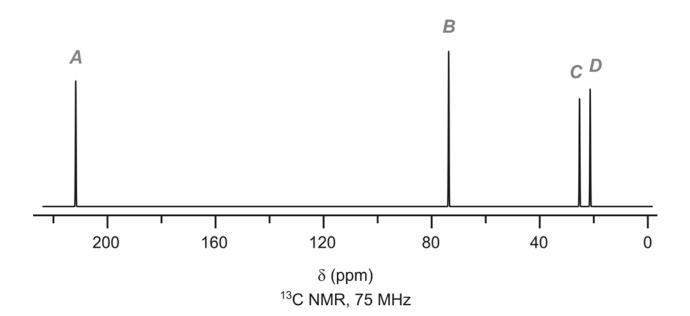
b. Each proton highlighted in the structures below could be split by neighboring protons. What kind of multiplet should each proton produce in a ¹H NMR spectrum? (Assume that there is no long-range coupling in these molecules.) Use the abbreviations on the chart on the right.

1	abbreviation	s for m	<u>ultiplets</u>
s:	singlet	qn:	quartet
d:	doublet		quintet
t:	triplet		sextet


(Problem 3 continued on next page)

- c. ¹H and ¹³C spectra for the isolated molecule are shown on the next page. Is the molecule diacetyl, acetoin, or 2,3-butanediol? On the unfinished skeleton in the box below, indicate your choice by drawing in the functional groups on the two center carbons, as well as all hydrogens. Then,
- δ = 2.2 ppm J = 7.0 Hz H H H H $\delta = 3.8 \text{ ppm}$


Format for answer to (c):


- Circle each group of equivalent H's;
- Assign a ¹H chemical shift (δ) to each circled group, within 0.1 ppm;
- Connect any pair of coupled, inequivalent groups of H's with a double-headed arrow, and then label that arrow with the corresponding coupling constant (*J*).

d. There are four peaks in the ¹³C NMR spectrum of our unknown molecule, labeled **A**, **B**, **C**, and **D**. Which carbons in your molecule do these peaks correspond to? As you did above in part (c), add functional groups to the two center carbons in the skeleton below to indicate whether you think the molecule is diacetyl, acetoin or 2,3-butanediol. Then, write a letter in each box to assign the ¹³C NMR to the corresponding carbon atoms in the structure. **Fill all 4 boxes.**

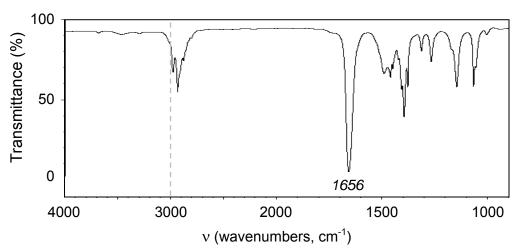
- e. Is the 1 H resonance of CHCl₃ at $\delta = 7.26$ ppm the farthest
- upfield
- or **downfield**
- ?

- 4. (36 pts) The spectra on pages 8-9 correspond to a pure solvent molecule, collected from the waste stream of a chemical plant. High-resolution mass spectrometry determined an exact mass of 101.0841 amu for the highest-mass (parent, \mathbf{M}^+) peak in the MS spectrum, which corresponds to a molecular formula of $\mathbf{C_5H_{11}NO}$.
 - a. Based on the features above 1600 cm⁻¹ in the IR spectrum, what functional groups could the unknown molecule possibly have? **Circle all answers that apply.**

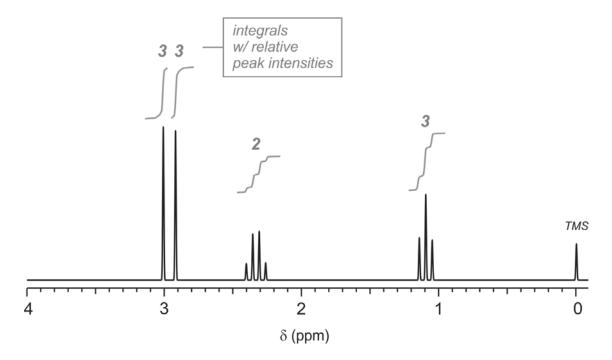
b. What is the structure of the molecule? In the box at right, draw your molecule's structure, including all hydrogens. Then, considering the ¹H NMR spectrum, circle each set of equivalent H's, and label each circle with its unique ¹H NMR chemical shift. (You do need not to label coupling constants J.)

your molecule (C₅H₁₁NO)

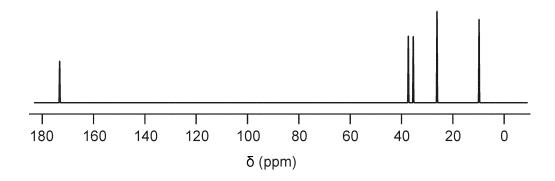
c. How many resonances would you expect to see in the ¹³C NMR of your molecule?

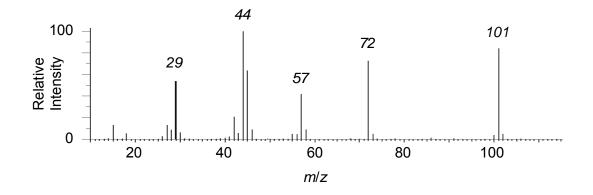

d. The mass spectrum shows two high-mass fragment peaks at m/z = 72 and m/z = 57. In each of the two boxes below, draw a mechanism (via "electron pushing") that shows how the radical cation of the parent molecule you drew in part (c) could yield these fragments.

fragment to yield mas 72 :	fragment to yield mass 57 :


e. In the mass spectrum, adjacent to the m/z = 44 and 101 peaks, there are smaller peaks that are one mass unit higher (at m/z = 45 and 102). In class, we said that $[\mathbf{M}+\mathbf{1}]^+$ peaks could correspond to ions that had one ¹³C atom in place of a ¹²C. Looking at the mass spectrum, is this a plausible explanation for the m/z = 45 and 102 peaks? (Circle one each line.)

The peak at $m/z = 45$	could	or	could not	be due to $m/z = 44$ ions bearing one ¹³ C.
The peak at <i>m</i> / <i>z</i> = 102	could	or	could not	be due to $m/z = 101$ ions bearing one ¹³ C.


IR Spectrum:


¹H Spectrum (200 MHz):

¹³C Spectrum (50 MHz):

Mass Spectrum:

¹H NMR Chemical Shifts

Compound Type	Chemical Shift (ppm)	Compound Type	Chemical Shift (ppm)
Alcohol R-O-H H R-C-O-	1-5 3.4-4.0	Amide O II R C N-H	7.5-8.5
Aldehyde	9-10	Amine R-N-H I H R-C-N-	0.5-5.0
Alkane RCH $_3$ R $_2$ CH $_2$ R $_3$ CH	0.9-2.0 ~0.9 ~1.3 ~1.7	Aromatic compound	2.3-3.0
Alkene $C = C \qquad sp^2 C-H$	4.5-6.0	H sp^2 C-H C-H benzylic sp^3 C-H	6.5-8 1.5-2.5
C=C allylic sp ³ C-H	1.5-2.5	Carbonyl compound $ \begin{array}{ccc} O & & & & \\ C & & & & \\ C & & & & \\ \end{array} $ $ \begin{array}{ccc} C & & & & \\ C & & & \\ \end{array} $ $ \begin{array}{cccc} C & & & \\ \end{array} $ $ \begin{array}{cccc} C & & & \\ \end{array} $ $ \begin{array}{cccc} C & & & \\ \end{array} $ $ \begin{array}{cccc} C & & & \\ \end{array} $ $ \begin{array}{cccc} C & & \\ \end{array} $ $ \begin{array}{ccccc} C & & \\ \end{array} $ $ \begin{array}{ccccccc} C & & \\ \end{array} $ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	2.0-2.5
H R-C-F H R-C-CI	3.0-4.0	Carboxylic acid O II C C O O O O O O O O O O O	10-12
H R-C-Br H R-C-I	2.7-4.0	Ether H R-C-O-R	3.4-4.0
Alkyne —C≡C−H	2.2-4.0	'	

¹³C NMR Chemical Shifts

Carbon Type	Structure	Chemical Shift (ppm)
	I	

Alkyl,
$$sp^3$$
 hybridized C $-C-H$ 5-45

Alkyl, sp^3 hybridized C bonded to $-C-Z$ 30-80
N, O, or X $Z=N$, O, X

Alkynyl, sp hybridized C $-C\equiv C-$ 65-100

Alkenyl, sp^2 hybridized C $C=C$ 100-140

Aryl, sp^2 hybridized C $C=C$ 120-150

Carbonyl C $C=C$ 160-210

Typical ¹H-¹H Coupling Constants (*J*)

IR Absorption Frequencies

Bond	Functional group	Wavenumber (cm ⁻¹)	Comment
0-H			
	• ROH	3600–3200	broad, strong
	 RCOOH 	3500-2500	very broad, strong
N-H			
14-11	• RNH ₂	3500–3300	two peaks
	• R ₂ NH	3500–3300	one peak
	• RCONH ₂ , RCONHR	3400–3200	one or two peaks; N-H
	110011112, 1100111111	0.000 0200	bending also observed at 1640 cm ⁻¹
C-H			
	 C_{sp} – H 	3300	sharp, often strong
	 C_{sp²} – H 	3150–3000	medium
	 C_{sp³} – H 	3000–2850	strong
	 C_{sp²} – H of RCHO 	2830–2700	one or two peaks
C≡C		2250	medium
C≡N		2250	medium
C=0			strong
	RCOCI	1800	
	 (RCO)₂O 	1800, 1760	two peaks
	• RCOOR	1745–1735	increasing \widetilde{v} with decreasing ring size
	• RCHO	1730	
	• R ₂ CO	1715	increasing \widetilde{v} with decreasing ring size
	 R₂CO, conjugated 	1680	
	• RCOOH	1710	
	 RCONH₂, RCONHR, RCONR₂ 	1680–1630	increasing \tilde{v} with decreasing ring size
C=C			
	 Alkene 	1650	medium
	Arene	1600, 1500	medium
C=N		1650	medium

18 8A 2	Helium 4.00	10 Ne Neon 20.18	18 Ar	Argon 39.95	36	Krypton 83.80	54	×enon	131.29	98	T	(222)			7.1 Lu	Lutetium 174.97	103	ב	Lawrencium (262)
	17 7 A	9 T Fluorine 19.00	ე -	Chlorine 35.45	35	Bromine	53	— lodine	126.90	85	Actatine	(210)			02 X	Ytterbium 173.04	102	S N	Nobelium (259)
	16 6A	8 Oxygen 16.00	9 0	Sulfur 32.07	34	Selenium	52	المالية المالية	127.60	84	6	(209)			69 L	Thulium 168.93	101	Βd	Mendelevium (258)
	15 5A	7 N itrogen 14.01	ಕ ರ	Phosphorus 30.97	33	AS Arsenic	51	Sb	121.76	83	ונים ביים ביים ביים ביים	208.98			8 Ш	Erbium 167.26	100	FB	Fermium (257)
	4 4 4 A	6 C Carbon 12.01	ր Հ	Silicon 28.09	35	Ge manium	50	S	118.71	82 28	ב ב	207.2			9	Holmium 164.93	66	Es	Californium Einsteinium (251) (252)
	13 3A	5 B Boron 10.81	13 Al	Aluminum 26.98	31	Gallium 69 73	49	_ D	114.82	81	Thalligh	204.38			99	Dysprosium 162.50	86	ざ	Californium (251)
				12 2B	30	Zinc A5 39	48	Cadmium	112.41	80	5	200.59			65 Tb	Terbium 158.93	97	BK	Berkelium (247)
				- - 1	29	Copper 63.55	47	Ag	107.87	62	Au	196.97			² D	Gadolinium 157.25	96	CB	Curium (247)
				10	28	Nickel	46	Pd	106.42	82	Z milital	195.08			63 Eu	Europium 151.96	92		Americium (243)
		er bol e	ic mass*	9 	27	Cobalt	45	Bh odjum	102.91	ZZ ZZ	Licinim Hidin	192.22	109	Mt Meitnerium (268)	Sm Sm	Samarium 150.36	94	Pu	Plutonium (244)
	Key	Atomic number Element symbol Element name	Average atomic mass*	ω	26 7	T lron አጸ አየ	44	Buthenium	101.07	92	S E	190.23	108	HS Hassium (269)	61 Pm	Promethium (145)	93	d N	Neptunium (237)
	¥	+++	\neg	7 7B	25	Manganese	43	TC Technetium		22	Phenium Bhenium	186.21	107	Bh Bohrium (264)	9 9	Praseodymium Neodymium Promethium 140.91 144.24 (145)	92		Uranium 238.03
		11 Na Sodium -	88.77	6 6B	24	Chromium	42	Molybdenum	95.94	74	A Tingston	183.84	106	Sg Seaborgium (266)	59 P	Praseodymium 140.91	91	Ра	Protactinium 231.04
				5 5B	23	Vanadium	41		92.91	£7	Tantalina Milland	180.95	105	Db Dubnium (262)	و 9	Cerium 140.12	06	드	Thorium 232.04
				4 4 B	7 S	Titanium 47.87	40	Zirconium	91.22	72	Hafriim Hafriim	178.49	104	Rutherfordium (261)		nen			
				3B 3B	21	Scandium	39	>	88.91	25	Lanthaniim	138.91	68	AC Actinium (227)		entheses, th	nass of the		
	2 S	Be Beryllium 9.01	12 Mg	Magnesium 24.31	20	Calcium 40 08	38	Strontium	87.62	99	מ פיייי	137.33	88	Ka Radium (226)		If this number is in parentheses, then	it refers to the atomic mass of the most stable isotone.		
- ₹ - 1	Hydrogen 1.01	3 Li Lithium 6.94	<u>- Z</u>	Sodium 22.99	19	Potassium	37	Ribiding Biging	85.47	55	<u>က</u> ်	132.91	<u>8</u> 7	Fr Francium (223)		If this numb	it refers to the atomic		
,	_	N	C	က		4		2			9			_		*			

Copyright © 2008 California Department of Education