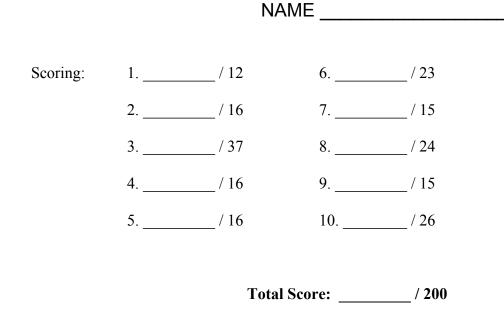
NAME _____

ID # _____

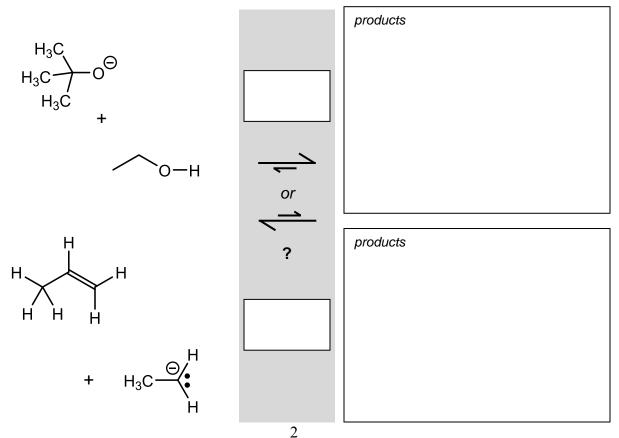
ORGANIC CHEMISTRY I (2301)

1:30 pm - 3:30 pm, December 16, 2014

Final Exam


You will be able to pick up your graded Exam 4 from Chemistry department staff in 115 Smith beginning Monday, December 22nd at 10 AM. Exams that are not picked up by the second week of spring semester will be disposed of.

A periodic table, a table of standard reaction conditions, and tables of typical NMR chemical shifts, coupling constants, and IR frequencies are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).


When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

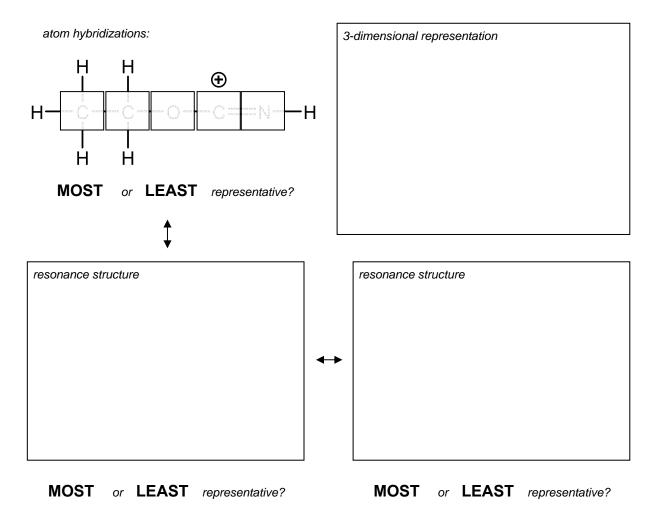
Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

- 1. (12 pts) For each of the sets of molecules below:
 - Using "electron pushing" (with double-barbed arrows), show how the molecules on the left would react in an acid-base reaction to transfer a proton from one to the other.
 - In the box on the right, draw the conjugate acid and base products of each reaction.
 - In the middle, draw an equilibrium arrow that shows whether you feel the acid-base equilibrium would lie on the left or the right.

- 2. (16 pts) For the ion drawn at right, in the boxes provided:
 - Draw all significant resonance structures. In each structure, draw all atoms, bonds, <u>lone pairs</u> of electrons, and formal charges. Then, circle which resonance structure you think is the most representative, and which is the least. Circle only <u>one MOST and one LEAST.</u>
 - Draw a Lewis wedge/dashed-bond structure that illustrates the most stable threedimensional conformation of the molecule. Draw all atoms, bonds, and charges, but omit lone pairs.

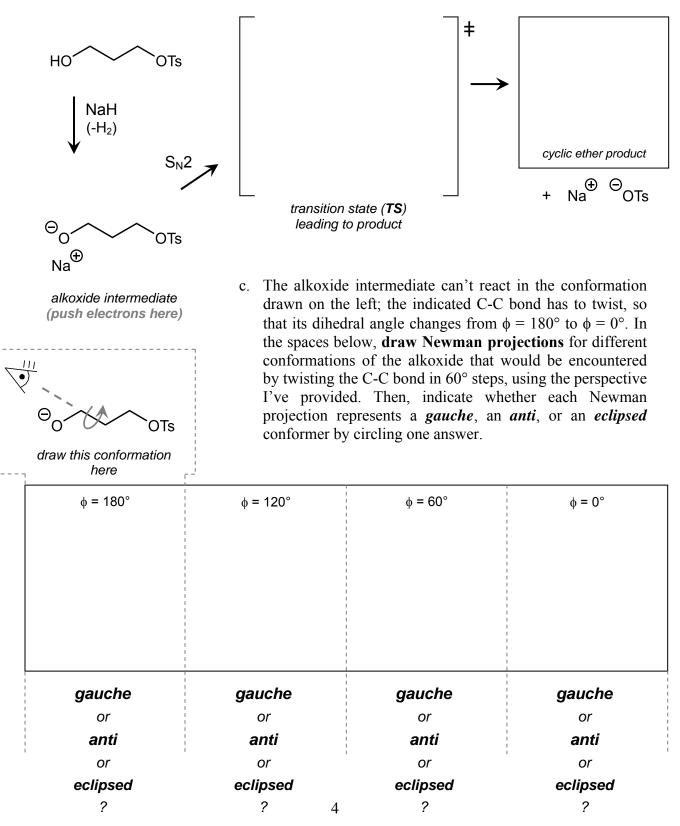
Н

Н

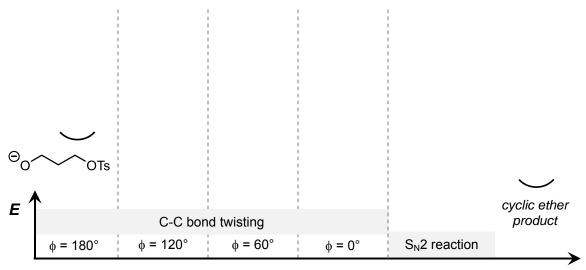

Н

н

(Ŧ)

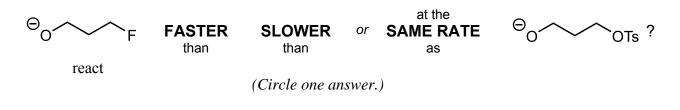

C = N - H

• In the boxes provided, write the hybridization state on any atom heavier than hydrogen.

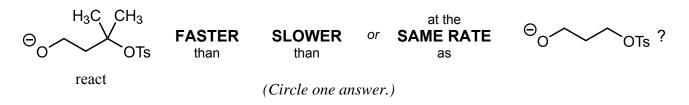


3. (37 pts) Cyclic ethers can often be synthesized by an intramolecular, ring-closing $S_N 2$ reaction. For example, when the alcohol starting material shown on the next page is deprotonated with NaH, the resulting alkoxide reacts with itself to form a cyclic product.

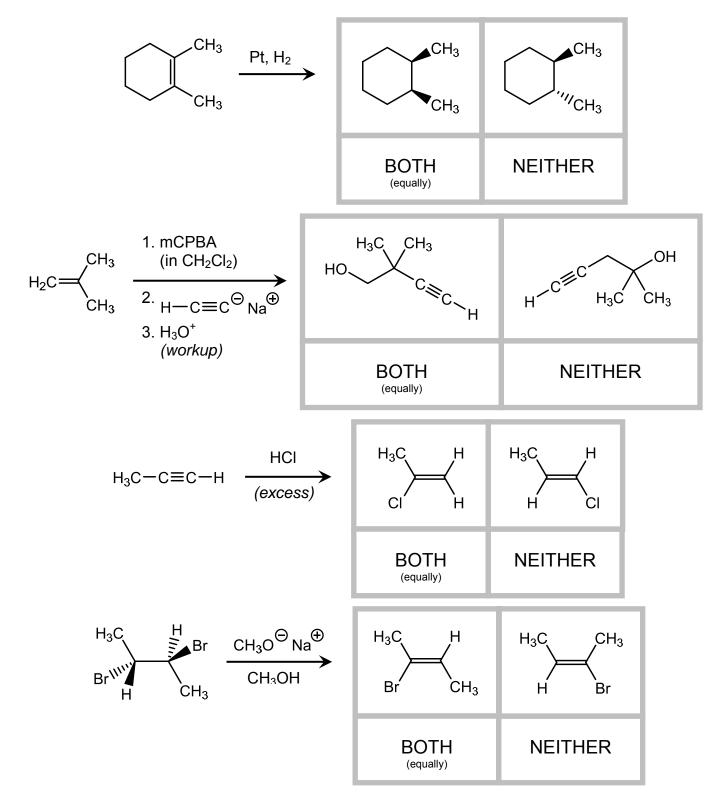
- a. Draw the product in the empty box on the right. Then, draw a transition state structure that illustrates the conformation of the transition state in the S_N2 reaction.
- b. Using "electron pushing", draw a mechanism that illustrates how the alkoxide intermediate reacts. I've drawn the alkoxide for you—just add curved arrows to my alkoxide intermediate structure.

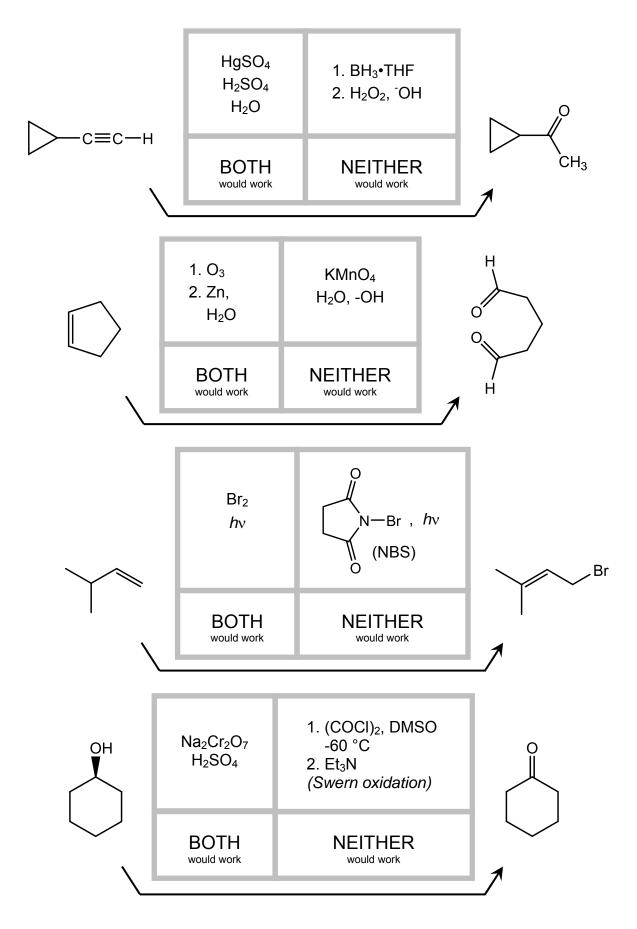


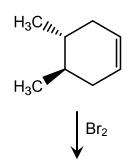
d. **Draw a potential energy diagram** that shows everything the alkoxide must do to react—including the C-C bond twisting and the S_N2 reaction. I have already drawn energies for the starting material and product; connect them with one, continuous energy curve. *You do not need to draw any molecule structures in this part.* Label the S_N2 transition state ("TS") on your curve.

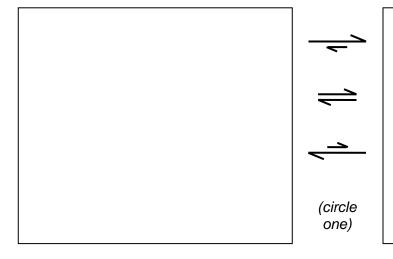


reaction coordinate

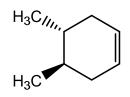

e. What if the functional group on the right was a fluoride instead of a tosylate? Would


f. What if the right-hand carbon also bore two methyl groups? Would


4. (16 pts) Each of the reactions on the next page is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced <u>equally</u>, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". **Circle one answer only.**



5. (16 pts) Each of the reactions on the next page is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, circle those conditions. If both sets of conditions would accomplish the reaction, circle "BOTH". If neither set of reaction conditions would succeed, circle "NEITHER". Circle one answer only.



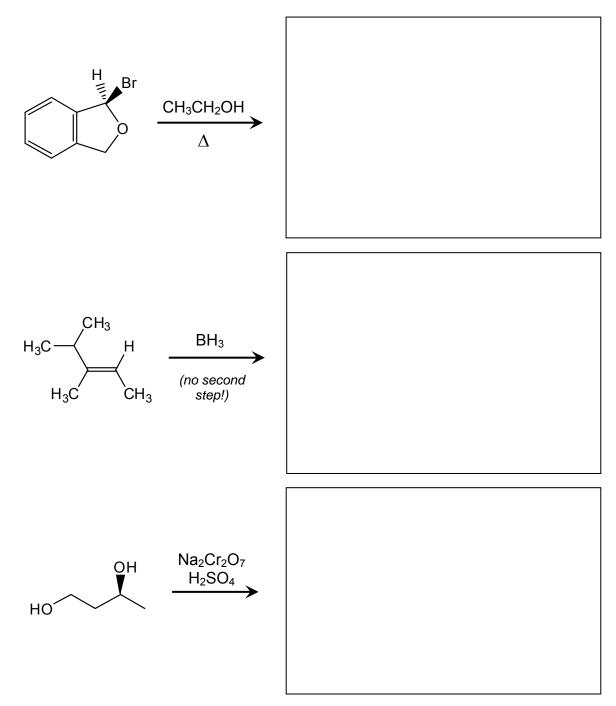
- 6. (23 pts) The *trans*-dimethylcyclohexene starting material shown at right reacts with Br₂ to yield just one preferred product.
 - a. **Draw the preferred product** as a pair of equilibrating cyclohexane chair conformers. Draw all non-hydrogen substituents, but feel free to omit H atoms.
 - b. Which conformer is more stable? Indicate which chair is more stable, or that they are equally stable, by circling one of the three equilibrium arrows between them.

- c. Is the starting material **CHIRAL** or **ACHIRAL** ? *(Circle one.)*
- d. On the structure on the right, **label each chiral center** with its appropriate Cahn-Ingold-Prelog designation [(R) or (S)]. Make it clear which atom in the drawing you are labeling.

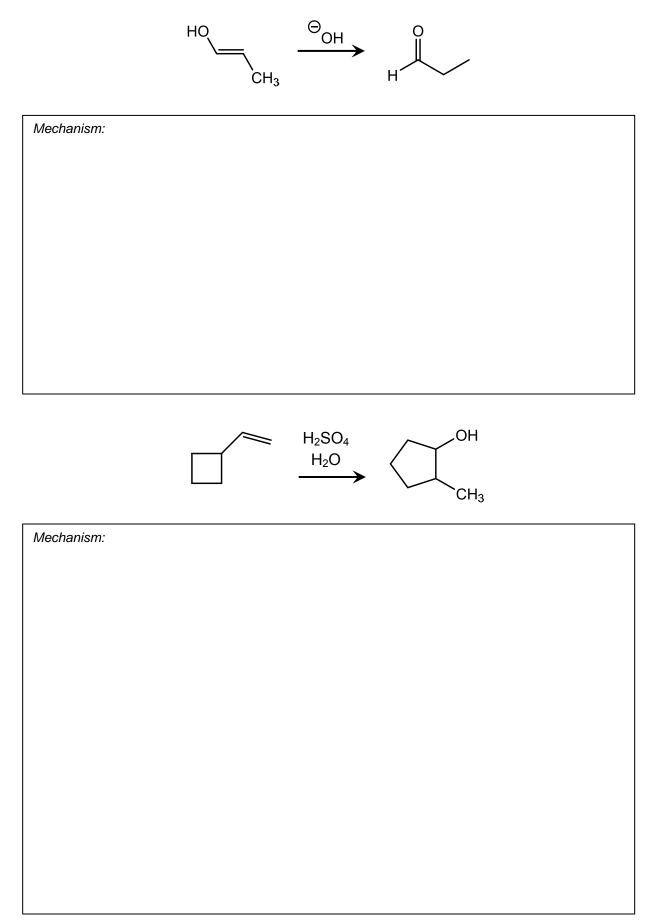
e. What about the cis-dimethylcyclohexene at right—is this

CHIRAL or **ACHIRAL** ? (*Circle one.*)

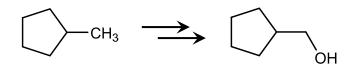
e.) appropriate H₃C

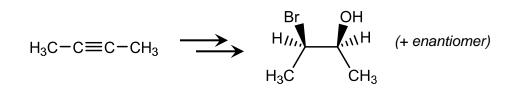

 H_3C

Once again, label each chiral center with its appropriate (R) or (S) designation.

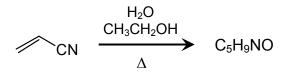

f. Are the cis- and trans-dimethylcyclohexenes above

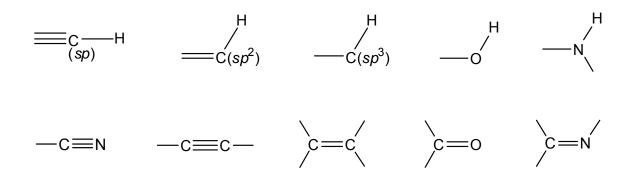
ENANTIOMERS , DIASTEREOMERS , or THE SAME MOLECULE ?


7. (15 pts) For each of the reactions below, **fill in the empty box corresponding to the major product**. Wherever appropriate, illustrate stereochemistry in your drawings (using wedge and dashed bonds). If multiple enantiomers or diastereomers are produced, indicate this in the answer box (e.g., by writing "+ enantiomer", etc.)

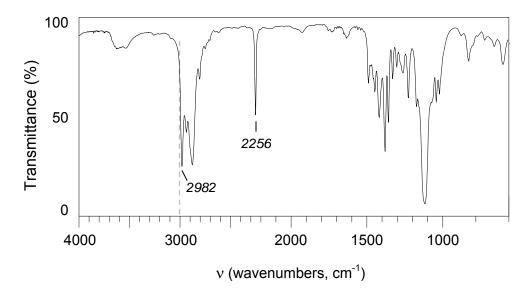

8. (24 pts) **Draw a mechanism** (using "electron pushing") for each reaction or series of reactions shown on the next page. Draw each mechanistic step explicitly; don't cheat by combining multiple processes in a single step. Use only the molecules shown in the problem; don't invoke generic species. (E.g., don't use "H-A" as a generic acid.)

9. (15 pts) For each set of starting materials and products shown below, **propose a multistep** synthesis. In addition to the molecules shown, you can use any reagents and reactions we've learned about in class. You might discover multiple answers to each problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route—we will give you partial credit where we can.



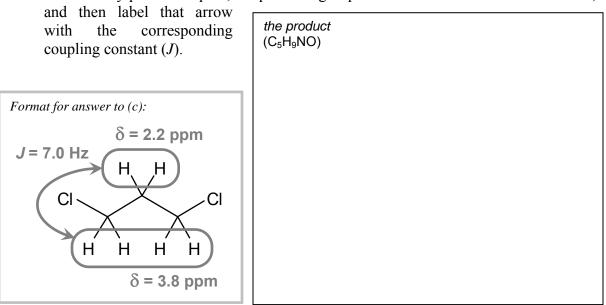

Multistep synthesis:

10. (26 pts) Acrylonitrile, the starting material on the right, can be polymerized into polyacrylonitrile (a component of plastic consumer goods) by heating it in solvent, but heating acrylonitrile in a mixture of ethanol

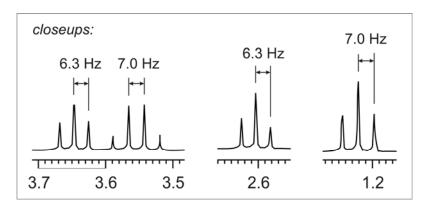


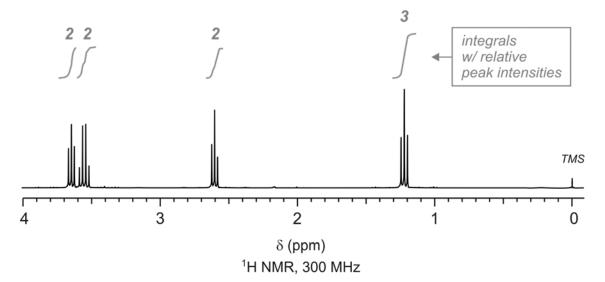
and water generates a small molecule product instead. This product was isolated and characterized by NMR and IR spectroscopy and mass spectrometry; the spectra of this product are shown on the next two pages. High-resolution mass spectrometry determined an exact mass of 99.06840 amu for the highest-mass (parent, M^+) peak in the MS spectrum, which corresponds to a molecular formula of C_5H_9NO .

a. Based on the features in the IR spectrum below, what functional groups would you expect the unknown molecule to have? Circle all answers that apply.

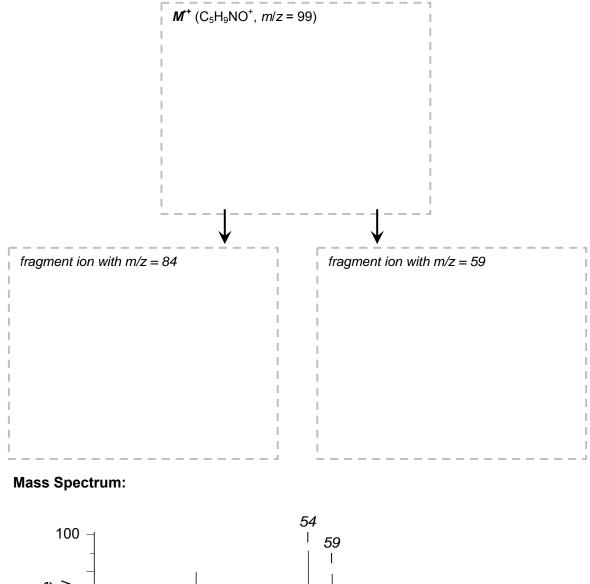


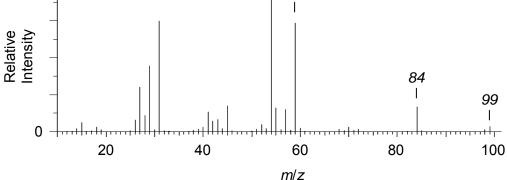
IR Spectrum:



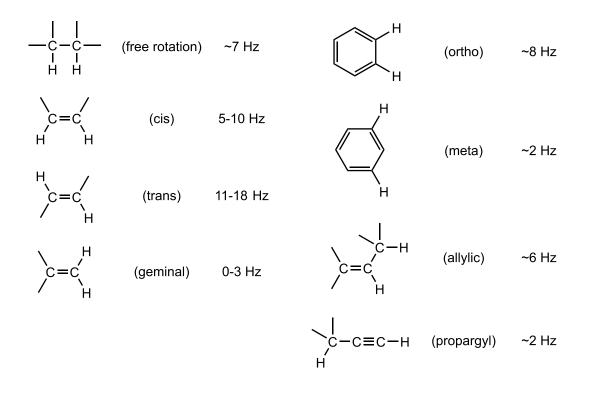

b. What is the structure of the product? In the box on the next page, draw the molecule's structure, <u>including all hydrogens</u>. Then, considering the ¹H NMR spectrum,

- Circle each group of equivalent H's;
- Assign a ¹H chemical shift (δ) to each circled group, within 0.05 ppm;
- Connect any pair of coupled, inequivalent groups of H's with a double-headed arrow,



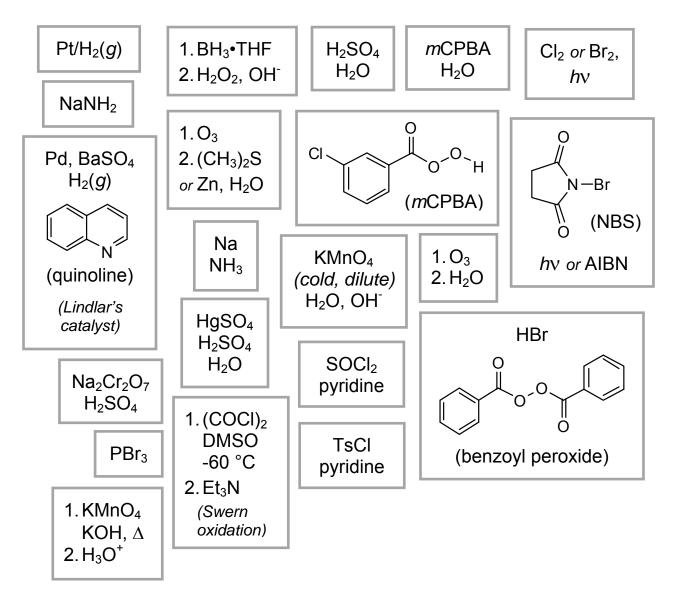

¹H NMR Spectrum:

c. In an electron-ionization (EI) mass spectrometry experiment, parent ions often fragment into daughter ions that give information about the parent's molecular structure. In the EI mass spectrum below, the parent mass peak at m/z = 99 corresponds to a radical cation (M^{++}) that fragments into ions with mass 84 and 59. In the boxes below, draw the structures of these ions. *You do not need to do electron pushing to answer this question—just draw the cations*. On all ion structures, make sure to specifically illustrate where the formal charge lies.


¹H NMR Chemical Shifts

Compound Type	Chemical Shift (ppm)	Compound Type	Chemical Shift (ppm)
Alcohol		Amide	
R-O-H	1-5	O II	7 5 0 5
H		о К ^С и-н	7.5-8.5
H R-C-O- I	3.4-4.0	 	
Aldehyde		Amine	
0		R-N-H	0.5-5.0
о к ^{-С} тн	9-10	н	
Alkane	0.9-2.0		2.3-3.0
RCH ₃	~0.9		
R_2CH_2	~1.3	Aromatic compound	
R ₃ CH	~1.7		
Alkene		Н <i>sp</i> ² С-Н	6.5-8
\ H		H sp^2 C-H C-H benzylic sp^3 C-H	
$C = C'$ $sp^2 C-H$	4.5-6.0	C-H benzylic	1.5-2.5
١		└──/ I sp ³ C-H	
$ \begin{array}{c} & \searrow \\ C = C \\ & \swarrow \\ & Sp^{3} C-H \end{array} $	1 5-2 5	Carbonyl compound	
/ \ <i>sp</i> ³ C-H	1.0-2.0		
		R^{C} H sp^{3} C-H on R^{C} h the α carbon	2.0-2.5
Alkyl Halide		κ κ the α carbon	
H R-C-F I	4.0-4.5		
•		Carboxylic acid	
H R-C-CI	3.0-4.0	0	10-12
Î		R ^{∽C} `ОН	
H	2.7-4.0	Ether	
R−Ċ−Br I	2.7-4.0	H	
H.		R-C-O-R	3.4-4.0
R−Ċ−I I	2.2-4.0		
Alkyne			
— СЕС-Н	~2.5		
	2.0		

¹³C NMR Chemical Shifts


Carbon Type	Structure	Chemical Shift (ppm)
Alkyl, <i>sp</i> ³ hybridized C	— —С-н 	5-45
Alkyl, <i>sp</i> ³ hybridized C bonded to N, O, or X	-C - Z Z = N, O, X	30-80
Alkynyl, sp hybridized C	—c≡c—	65-100
Alkenyl, <i>sp</i> ² hybridized C	C=C	100-140
Aryl, <i>sp</i> ² hybridized C	c	120-150
Carbonyl C) C=0	160-210

Typical ¹H-¹H Coupling Constants (*J*)

IR Absorption Frequencies

Bond	Functional group	Wavenumber (cm ⁻¹)	Comment								
0-Н											
	• ROH	3600-3200	broad, strong								
	• RCOOH	3500-2500	very broad, strong								
N-H											
	RNH ₂	3500-3300	two peaks								
	• R ₂ NH	3500-3300	one peak								
	 RCONH₂, RCONHR 	3400–3200	one or two peaks; N – H bending also observed at 1640 cm ⁻¹								
C-H											
	• C _{sp} – H	3300	sharp, often strong								
	• C _{sp²} – H	3150-3000	medium								
	• C _{sp³} -H	3000–2850	strong								
	• C _{sp²} – H of RCHO	2830–2700	one or two peaks								
C≡C		2250	medium								
C≡N		2250	medium								
c=o			strong								
	RCOCI	1800									
	 (RCO)₂O 	1800, 1760	two peaks								
	RCOOR	1745–1735	increasing \widetilde{v} with decreasing ring size								
	RCHO	1730									
	• R ₂ CO	1715	increasing ⊽ with decreasing ring size								
	 R₂CO, conjugated 	1680									
	RCOOH	1710									
	 RCONH₂, RCONHR, RCONR₂ 	1680–1630	increasing \tilde{v} with decreasing ring size								
C=C											
	Alkene	1650	medium								
	Arene	1600, 1500	medium								
C = N		1650	medium								

Final Exam Chart of Reaction Conditions

California Standards Test

Chemistry Reference Sheet

Periodic Table of the Elements

ſ																									
	18 8A	Helium 4.00	10 Ne	20.18	18 Ar	Argon 39.95	36	Kr	83.80	54	Xe	xenon 131.29	86	R	Radon (222)					71	Lu	Lutetium 174.97	103	Lr Lawrencium	(202)
	-	17 7A	0 T	19.00	17 17	Chlorine 35.45	35	ה	79.90	- 23		126.90	85	At	Astatine (210)					70	γb	Ytterbium 173.04	102		(607)
		16 6A	8 O	16.00	1 6	Sulfur 32.07	34	Se	78.96	52	e	127.60	84	Ъ	Polonium (209)					69	Tm	Thulium 168.93	101		(oc2)
		15 5A	Nitrocen	14.01	15 D	Phosphorus 30.97	33	As	74.92	51	Sb	Antimony 121.76	83	Bi	Bismuth 208.98					68	ц	Erbium 167.26	100	Fermium	(/07)
		14 40	o O o	12.01	14 N i	Silicon 28.09	32	Ge	72.61	20	Sn	118.71	82	Pb	Lead 207.2					67		Holmium 164.93	66	Einsteinium	(707)
		13 3A	ີ ເມີດ ຕ ີ	10.81	13 A I	Aluminum 26.98	31	Ga	69.72	49	ב	114.82	81	F	Thallium 204.38					99	D	Dysprosium 162.50	98	Californium	(102)
		er bol bic mass.*		12 2B	30	Zn	65.39	48 48	CC	112.41	80	Hg	Mercury 200.59					65		Terbium 158.93	67	Berkelium	(1+1)		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29	Cu	Copper 63.55	47	b d	5IIVEr 107.87	79	Au	Gold 196.97					64	gd	Gadolinium 157.25	96	Curium Curium			
						10	28	Ż	Palladium 195.08 195.08	r				95	Americium										
			nic mass*	6 8 10 10	27	°	58.93	45	R	102.91		-	Iridium 192.22	109	Rt	Meitnerium (268)		62		Samarium 150.36		Pu Plutonium			
	Key Atomic number Element symbol Element name Averade atomic	Average atomic mass*	∞	26		55.85	44	Bu	101.07	76	SO	Osmium 190.23	108	Hs	Hassium (269)		61	Pn	Promethium (145)	93	Neptunium	(107)			
		Sodium Htc		7 7B	25		manganes 54.94		С ЧС	(98)		Be	Rhenium 186.21	I		(264)	r	09	PN	Praseodymium Neodymium Promethium 140.91 144.24 (145)	92	Uranium	200.02		
			7	6 6B	24	ັ	52.00	42	Mo	Molybaanum 95.94	74	≥	Tungsten 183.84	106	Sg	Seaborgium (266)	r	59	P	Praseodymium 140.91	91	Pa Protactinium	40.104		
				5 5B	23	>	50.94	41	QN	92.91	73	Та	Tantalum 180.95	105		Dubnium (262)		58	ů	Cerium 140.12	06	Thorium	232.04		
				4 4 4B	22	F	47.87	40	Zr	21rconium 91.22	72		Hafnium 178.49	104	ž	Rutherfordium (261)				then					
						e B	21	Sc	44.96	68		үшлш 88.91	57	La	Lanthanum 138.91	89	Ac	Actinium (227)		If this number is in parentheses, then it refers to the atomic mass of the			mass of the		
	г	0 N	Bervilium Bervilium	9.01	12 Mg	Magnesium 24.31	20		40.08	88 (87.62	56	Ba	Barium 137.33	88	Ba	Radium (226)				ber is in pa	the atomic e isotone		
	+ t	Hydrogen	-	6.94	± N	0) (1	19		39.10	37		Rubidium 85.47	55		Cesium 132.91	87		Francium (223)					it reters to the atomi most stable isotone		
		-	N		(ເ		4			Ŋ			9)		~					*			

Copyright © 2008 California Department of Education