NAME	 		
ID#			

ORGANIC CHEMISTRY I (2301)

1:30 pm - 3:30 pm, December 17, 2013

Final Exam

There will be two ways that you can pick up your graded final exam:

- You can pick up your graded exam from Andy at office hours that he will hold on Thursday, December 19th (9:30-11 am) in Coffman Union Starbucks.
- Alternately, you will be able to pick up your exam in private from Chemistry department staff in 115 Smith beginning Friday, December 20th.

A periodic table, a chart of reaction conditions, and tables of typical NMR chemical shifts, coupling constants, IR stretching frequencies, and isotopic abundances are attached to the back of this exam as aides. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

When the exam begins, please write your name at the top of the next page.

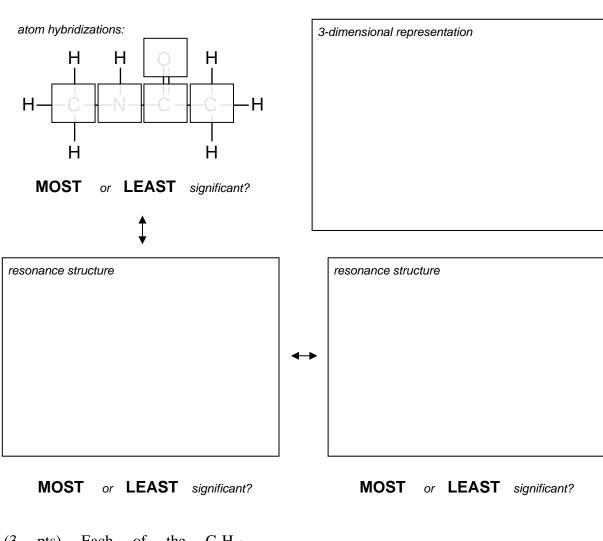
You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.


Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

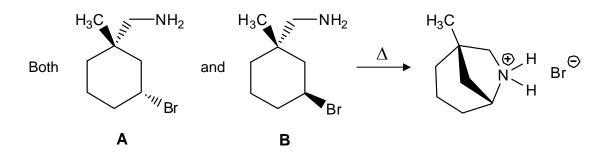
NAME	

Scoring:

Total Score: _____/ 200


- 1. (12 pts) For each of the pairs of acids (or bases) below,
 - Draw the conjugate base (or acid).
 - Circle whether you think the first acid (or base) is more or less acidic (or basic) than the second.

2. (17 pts) For methyl acetamide (drawn at right), in the boxes provided:


lone pairs.

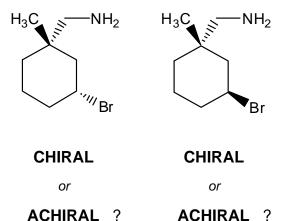
- H H O H
 | | | |
 H-C-N-C-C-H
 | | |
- Draw all significant resonance structures. In each structure,
 draw all atoms, bonds, lone pairs of electrons, and formal
 charges. Then, circle which resonance structure you think is
 the most significant, and which is the least. Circle only one MOST and one LEAST.
- Draw a Lewis wedge/dashed-bond structure that illustrates the most stable three-dimensional conformation of the molecule. Draw all atoms, bonds, and charges, but omit
- In the boxes provided, write the hybridization state on any atom heavier than hydrogen.

3. (3 pts) Each of the C_6H_{12} cycloalkanes on the right combusts in O_2 exothermically (with ΔH_{comb} << 0) to CO_2 and H_2O . Which one combusts the most exothermically? (Circle one molecule.)

4. (34 pts) Each of the starting materials below, when heated, is transformed into the same product. However, the two starting materials react via different mechanisms. In this problem, you will explain why.

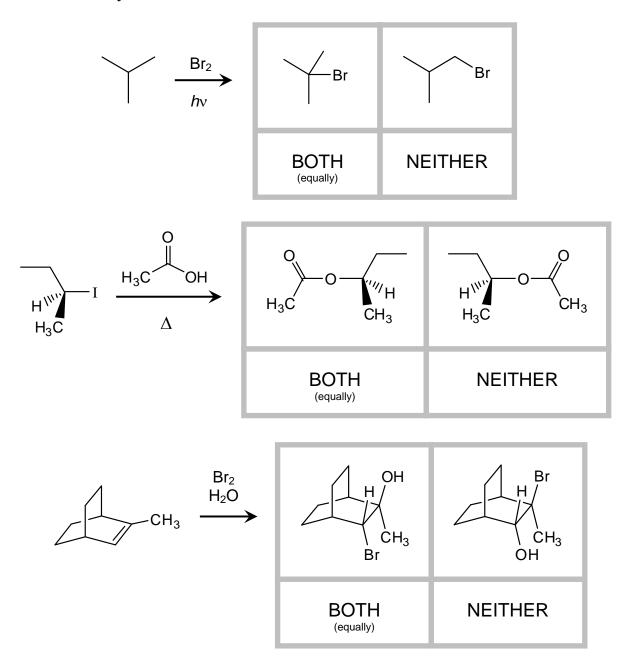
(a) Each of the starting cyclohexanes (which I've labeled **A** and **B**) has two equilibrating chair conformers. In the boxes below, draw the two chair conformers for each starting material. Feel free to omit the ring hydrogens, but draw all non-hydrogen substituents.

2 chair conformers for molecule A

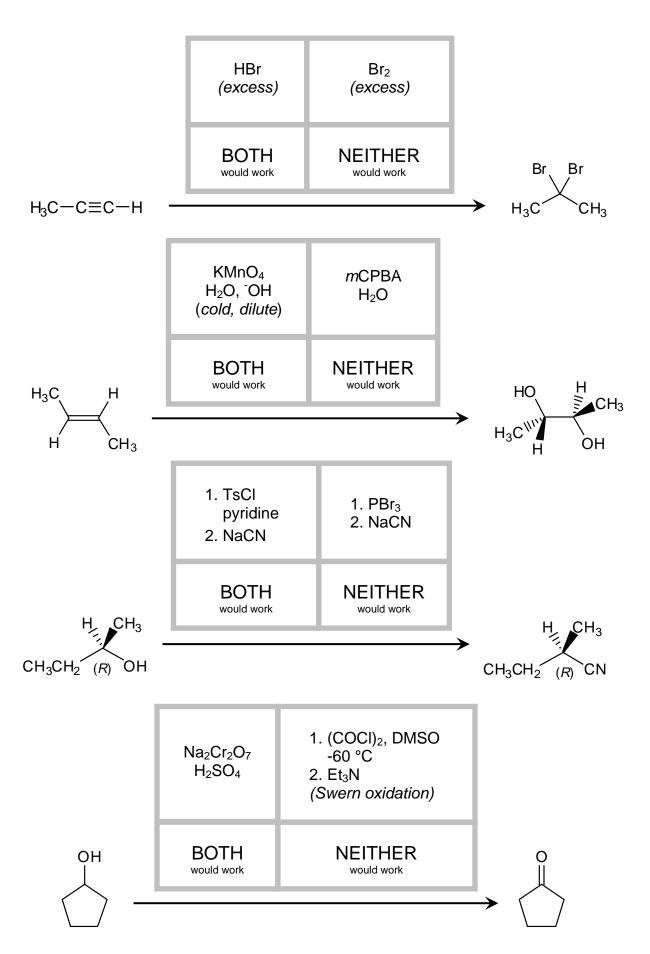

2 chair conformers for molecule B

- (b) Of the four conformers you drew on the previous page, only <u>one</u> will react to make product via S_N2 . In the box on the right, re-draw that conformer. Then, "push electrons" (using curved arrows) to show how the product would be generated from this conformer. (You don't need to re-draw the product, just push electrons.)
- (c) Your answer to part (b) explains how one of the starting materials is converted to product. How is product generated from the other starting material? Please be brief; you can probably answer this question in less than 5 words. You do not need to draw a mechanism to answer this question.

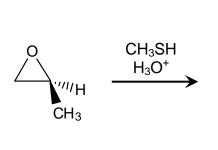
Mechanism for S_N2 -reactive conformer
Is this molecule $\bf A$ or $\bf B$? (Circle one.)

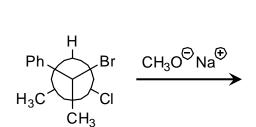

Explain how:

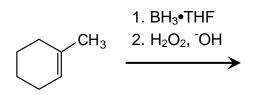
(d) Are the two starting materials chiral? For each starting material, **circle** whether you think the molecule is chiral or achiral. Then, **label each chiral center** with its appropriate Cahn-Ingold-Prelog designation [(R) or (S)]. Make it clear which atom in the drawing you are labeling.



- (e) What is the stereochemical relationship between the two starting materials? (Circle one answer.) Are they
 - ENANTIOMERS or DIASTEREOMERS or NEITHER ?


5. (12 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced <u>equally</u>, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". **Circle one answer only.**

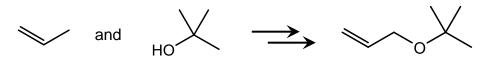


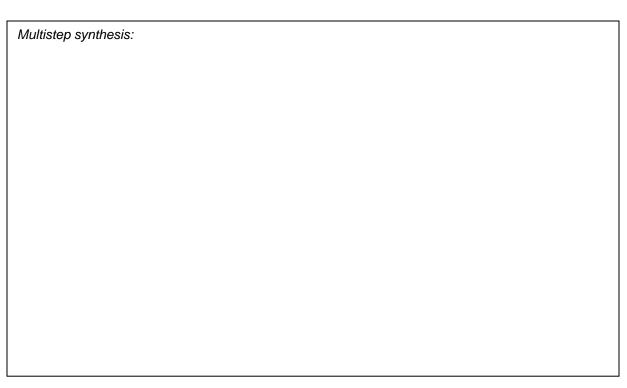

6. (16 pts) Each of the reactions *on the next page* is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, circle those conditions. If both sets of conditions would accomplish the reaction, circle "BOTH". If neither set of reaction conditions would succeed, circle "NEITHER". **Circle one answer only.**

7. (15 pts) For each of the reactions on the following pages, fill in the empty box corresponding to the major product. Wherever appropriate, illustrate stereochemistry in your drawings (using wedge and dashed bonds). If multiple enantiomers or diastereomers are produced, indicate this in the answer box (e.g., by writing "+ enantiomer", etc.)

8. (34 pts) Draw a mechanism (using "electron pushing") for each reaction or series of reactions shown below. Draw each mechanistic step explicitly; don't cheat by combining multiple processes in a single step. Use only the molecules shown in the problem; don't invoke generic species. (E.g., don't use "H-A" as a generic acid.)

$$\begin{array}{c} \text{Br} & \text{H}_2\text{O} \\ \hline & \Delta \end{array}$$


Mechanism:	

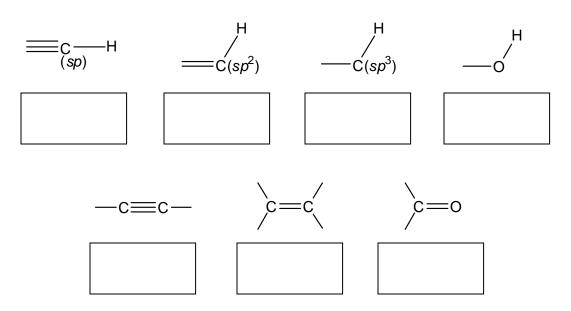

One of the intermediates you drew in this mechanism could be stabilized by a 1,2-hydride shift. What alcohol product would be generated if this shift occurred?

H-C
$$\equiv$$
C-H
$$\begin{array}{c}
1. \text{ NaNH}_2 \\
2. \text{ O} \\
\hline
3. \text{ H}_3\text{O}^+
\end{array}$$
H-C \rightleftharpoons C OH

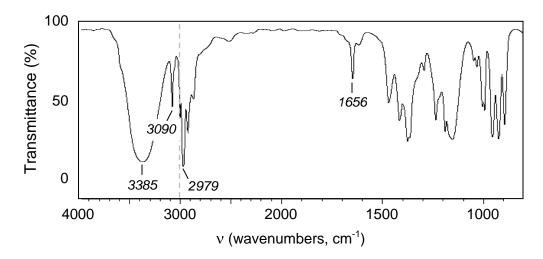
Mechanism:	

9. (18 pts) For each set of starting materials and products shown on the next page, **propose a multistep synthesis**. In addition to the molecules shown, you can use any reagents and reactions we've learned about in class. You might discover multiple answers to each problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route—we will give you partial credit where we can.

$$H_3C-C\equiv C-CH_3$$
 H_3C
 CH_3 (+ enantiomer)

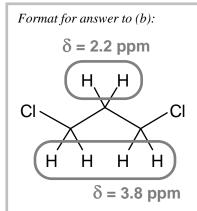

Multistep synthesis:

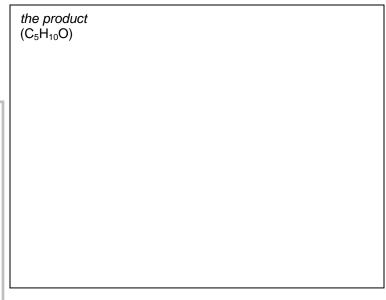
10. (37 pts) The bromoalkene starting material on the right reacts with water and heat to give a number of $S_{\rm N}1$ substitution and E1 elimination products. One product was isolated and characterized by NMR and IR spectroscopy and mass spectrometry; the spectra of this product are shown on the


$$\xrightarrow{\mathsf{H}_2\mathsf{O}} ?$$

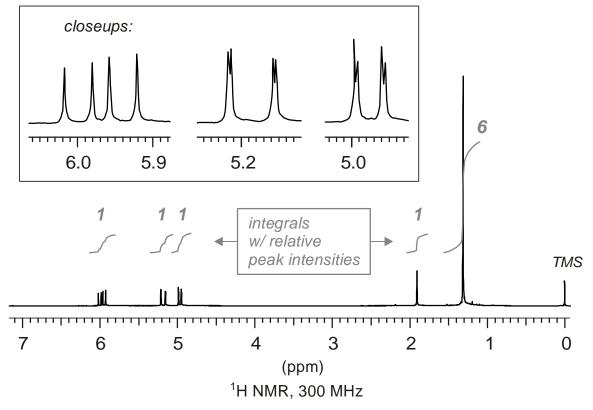
following pages. High-resolution mass spectrometry determined an exact mass of 86.0732 amu for the highest-mass (parent, \mathbf{M}^+) peak in the MS spectrum, which corresponds to a molecular formula of $\mathbf{C}_5\mathbf{H}_{10}\mathbf{O}$.

(a) Four of the peaks in the IR spectrum below are labeled with their *x*-axis (wavenumber) value. What type of bond in the product does each peak correspond to? Match each peak to its bond vibration by writing its wavenumber value in the appropriate box. *There are seven boxes, so please leave three of them empty.*



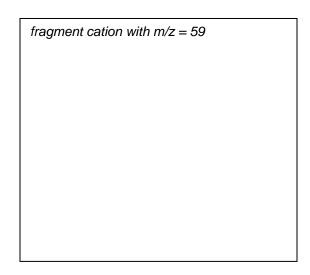

IR Spectrum:

(b) What is the structure of the product? In the box at right, draw the molecule's structure, including all hydrogens. Then, considering the ¹H NMR spectrum below, circle each set

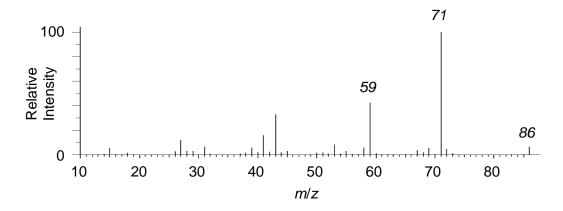

of equivalent H's, and label each circle with its unique 1 H NMR chemical shift to within 0.1 ppm. (You do not need to label coupling constants J.)

(c) By what mechanism was this product generated, S_{N1} or E1 ? (Circle one.)

¹H NMR Spectrum:



(d) In the electron-ionization (EI) mass spectrum, the parent mass peak at m/z = 86 corresponds to a radical cation ($\mathbf{M}^{\bullet+}$) that is generated by removing one electron from the original, neutral molecule \mathbf{M} . In the box on the right, draw $\mathbf{M}^{\bullet+}$; re-draw the structure you drew in part (b), but specifically indicate which electron is removed by drawing the molecule with one less electron.


$$M^+$$
 (C₅H₁₀O⁺)

(e) What are the structures of the two predominant daughter (fragment) cations in the mass spectrum that have m/z = 71 and 59? You do not need to do electron pushing to answer this question—just draw the cations.

fragment cation with m/z = 71

Mass Spectrum:

Summary of IR Stretching Frequencies

Frequency (cm ⁻¹)	Functiona	l Group	Comments
3300	alcohol amine, amide alkyne	0—H N—H ≡C—H	always broad may be broad, sharp, or broad with spikes always sharp, usually strong
3000	alkane	-c-н	just below 3000 cm^{-1}
	alkene	$=C \subset_H$	just above 3000 cm ⁻¹
	acid	о—н	very broad
2200	alkyne - nitrile	-C≡C- -C≡N	just below 2200 cm^{-1} just above 2200 cm^{-1}
1710 (very strong)	carbonyl	>c=o	ketones, aldehydes, acids esters higher, about 1735 cm ⁻¹ conjugation lowers frequency amides lower, about 1650 cm ⁻¹
1660	alkene	>c=c<	conjugation lowers frequency aromatic C=C about 1600 cm ⁻¹
	imine	C=N	stronger than C=C
	amide	>c=o	stronger than C=C (see above)

Ethers, esters, and alcohols also show C—O stretching between 1000 and 1200 cm⁻¹.

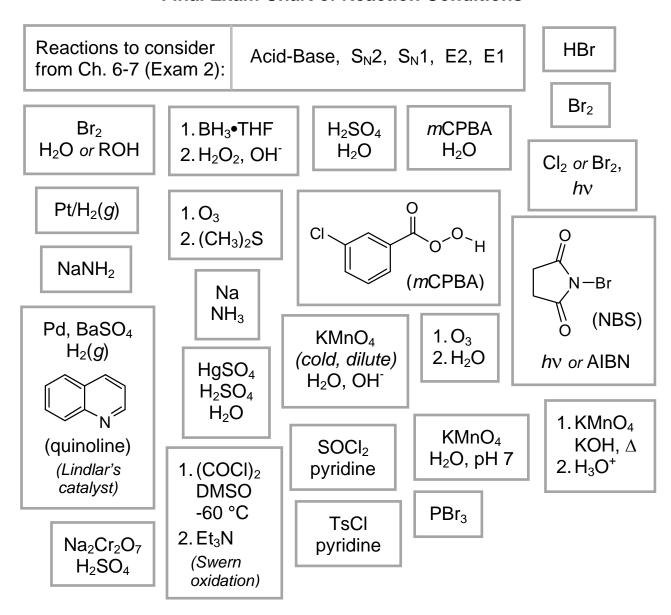
Isotopic Composition of Some Common Elements

Element	ı	M ⁺	M	l+1	M+2			
hydrogen carbon nitrogen oxygen sulfur chlorine bromine iodine	¹ H ¹² C ¹⁴ N ¹⁶ O ³² S ³⁵ Cl ⁷⁹ Br ¹²⁷ I	100.0% 98.9% 99.6% 99.8% 95.0% 75.5% 50.5% 100.0%	¹³ C ¹⁵ N	1.1% 0.4% 0.8%	¹⁸ O ³⁴ S ³⁷ Cl ⁸¹ Br	0.2% 4.2% 24.5% 49.5%		

¹H NMR Absorptions

Compound type	Chemical shift (ppm)
Alcohol	
R-O-H	1–5
H	
R-C-O-	3.4-4.0
Aldehyde	
O B	
R ^{∕C} ∕H	9–10
Alkane	0.9–2.0
RCH₃	~0.9
R ₂ CH ₂	~1.3
R₃CH	~1.7
Alkene	
Н	
Sp^2 C-H allylic Sp^3 C-H	4.5–6.0
\I	
C-H	
C=C allylic sp ³ C-H	1.5-2.5
lkyl halide	110 210
R-C-F	4.0-4.5
Ī	
R-C-CI	3.0-4.0
R-C-Br	2.7-4.0
H R-C-F H R-C-CI H-R-C-Br H-R-C-Br	
R-C-I	2.2-4.0
llkyne	
—C≡C−H	~2.5

Compound type	Chemical shift (ppm
Amide O	
R C N-H	7.5–8.5
Amine	
R-N-H	0.5–5.0
H R-Ç-N	2.3–3.0
Aromatic compound	
P H sp^2 C-H p^2 C-H benzylic sp^3 C-H	6.5–8
$C-H$ benzylic sp^3 $C-H$	1.5–2.5
Carbonyl compound	
$^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ C-H on the α carbon	2.0–2.5
Carboxylic acid	
R ^C OH	10–12
Ether H R-C-O-R	


¹³C NMR Absorptions

Carbon type	Structure	Chemical shift (ppm)
Alkyl, sp ³ hybridized C	— С- н	5–45
Alkyl, sp^3 hybridized C bonded to N, O, or X	$- \begin{vmatrix} - \\ - \\ - \end{vmatrix} = Z$ $Z = N, O, X$	30–80
Alkynyl, sp hybridized C	—c≡c—	65–100
Alkenyl, $s\rho^2$ hybridized C	c=c	100–140
Aryl, sp² hybridized C	<u></u>	120–150
Carbonyl C	c=o	160–210

IR Absorption Frequencies

Bond	Functional group	Wavenumber (cm ⁻¹)	Comment
0-H			
	• ROH	3600–3200	broad, strong
	 RCOOH 	3500-2500	very broad, strong
N-H			
14-11	• RNH ₂	3500–3300	two peaks
	• R ₂ NH	3500–3300	one peak
	• RCONH ₂ , RCONHR	3400–3200	one or two peaks; N-H
	110011112, 1100111111	0.000 0200	bending also observed at 1640 cm ⁻¹
C-H			
	• C _{sp} – H	3300	sharp, often strong
	 C_{sp²} – H 	3150–3000	medium
	 C_{sp³} – H 	3000–2850	strong
	 C_{sp²} – H of RCHO 	2830–2700	one or two peaks
C≡C		2250	medium
C≡N		2250	medium
C=0			strong
	RCOCI	1800	
	 (RCO)₂O 	1800, 1760	two peaks
	• RCOOR	1745–1735	increasing \widetilde{v} with decreasing ring size
	• RCHO	1730	
	• R ₂ CO	1715	increasing \widetilde{v} with decreasing ring size
	 R₂CO, conjugated 	1680	
	• RCOOH	1710	
	 RCONH₂, RCONHR, RCONR₂ 	1680–1630	increasing \widetilde{v} with decreasing ring size
C=C			
	 Alkene 	1650	medium
	Arene	1600, 1500	medium
C=N		1650	medium

Final Exam Chart of Reaction Conditions

18 8A 2	Helium 4.00	10 Ne Neon 20.18	18 Ar	Argon 39.95	36	Krypton	83.80	Xe	Xenon 131.29	98	R	Radon (222)			L u	Lutetium 174.97	103	בֿ	Lawrencium (262)
	17 7.4	9 Fluorine 19.00	ე ქ	Chlorine 35.45	32	Bromine	73.30	-	lodine 126.90	82	Αţ	Astatine (210)			0 Q	Ytterbium 173.04	102	S N	Nobelium (259)
	16 6A	8 Oxygen 16.00	9 (Sulfur 32.07	8 (Selenium	78.90	H	Tellurium 127.60	84	Ъ	Polonium (209)			69 E	Thulium 168.93	101	Βd	Mendelevium (258)
	15 5A	7 N itrogen 14.01	ნ ნ	Phosphorus 30.97	33	AS Arsenic	74.92	Sp	Antimony 121.76	83	<u></u>	Bismuth 208.98			88 <u>m</u>	Erbium 167.26	100	FB	Fermium (257)
	4 4 4 A	6 C Carbon 12.01	ր <u>Դ</u>	Silicon 28.09	35	Ge manium	72.61	Sn	Tin 118.71	82	Pb	Lead 207.2			67 Ho	Holmium 164.93	66	Es	Californium Einsteinium (251) (252)
	13 3A	5 B Boron 10.81	13 Al	Aluminum 26.98	31	Gallium Gallium	49	<u> </u>	Indium 114.82	81	F	Thallium 204.38			99	Dysprosium 162.50	86	Ċ	Californium (251)
				12 2B	30	Zinc	65.39 48	පි	Cadmium 112.41	80	Нg	Mercury 200.59			65 Tb	Terbium 158.93	6	器	Berkelium (247)
				- = =	59 (Copper	63.55	Ąď	Silver 107.87	79	Αn	Gold 196.97			⁶⁴ D	Gadolinium 157.25	96	CH	Curium (247)
				10	28	Nickel 8	58.69 46	₽d	Palladium 106.42	78	풉	Platinum 195.08			63 Eu	Europium 151.96	95		Americium (243)
		er bol e	nic mass*	9 —88—	27	Cobalt	58.93 45	R	Rhodium 102.91	77	<u>-</u>	Iridium 192.22	109	Mt Meitnerium (268)	Sm	Samarium 150.36	94	Pu	Plutonium (244)
	Key	Atomic number Element symbol Element name	Average atomic mass*	∞	26	L loo loo loo	55.85	Ru	Ruthenium 101.07	92	Os	Osmium 190.23	108	Hassium (269)	61 Pm	Promethium (145)	93	d N	Neptunium (237)
	¥	+++	$\neg \Box$	7 7B	25	Min Manganese	24.94	ှိ င	Technetium (98)	75	Re	Rhenium 186.21	107	Bh Bohrium (264)	9 P	Praseodymium Neodymium Promethium 140.91 144.24 (145)	95		Uranium 238.03
		11 Na Sodium -	66.77	6 6B	24	Chromium	52.00	Mo	Molybdenum 95.94	74	>	Tungsten 183.84	106	Sg Seaborgium (266)	59 Pr	Praseodymium 140.91	91	Ра	Protactinium 231.04
				5 5B	23	Vanadium	50.94	S Q	Niobium 92.91	73	<u>a</u>	Tantalum 180.95	105	Dubnium	S 9	Cerium 140.12	06	드	Thorium 232.04
				4 4 8	55 1	Titanium	47.87	Ř	Zirconium 91.22	72	Ξ	Hafnium 178.49	104	Rutherfordium		nen			
				3B	5 6	Scandium	30	>	Yttrium 88.91	22	Гa	Lanthanum 138.91	88	Actinium		entheses, th	nass of the		
	2 S A	Be Beryllium	12 Mg	Magnesium 24.31	50 6	Calcium	30.08	ა ა	Strontium 87.62	56	Ba	Barium 137.33	88	Ra Radium (226)		If this number is in parentheses, then	it refers to the atomic mass of the		
- ₹ - 1	Hydrogen 1.01	3 Li Lithium 6.94	<u>- S</u>	Sodium 22.99	19	K Potassium	39.10	Rb Sp	Rubidium 85.47	55	Cs	Cesium 132.91	87	Francium		If this numb	it refers to the atomic	1001	
,		N	C	n		4		יכ)		9			7		*			

Copyright © 2008 California Department of Education