
sp³ Hybridization in Ethane (CH₃CH₃)

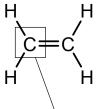
Geometry of Ethane (CH₃CH₃)

So, ethane is tetrahedral at both carbons.

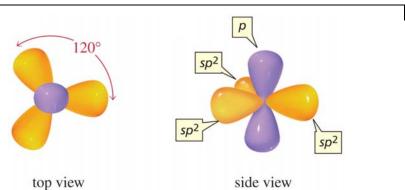
From ChemBio3D, free to UofM students; http://tinyurl.com/2301Office.

True for more complicated molecules too.

Wedge/Dash-Bond Drawings

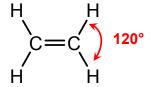

How might you draw 3-D perspective for:

$$H_{3}C-C-C-C+_{3}$$

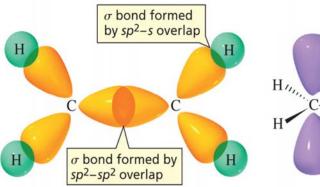

Three isomers of difluoropropane $(C_3H_6F_2)$

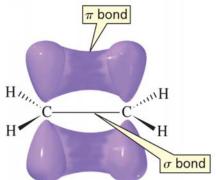
Draw all bonds and atoms.

Geometry of Ethene (CH₂CH₂)

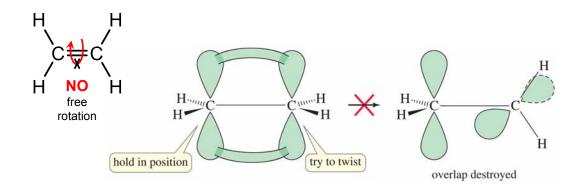


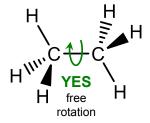
Each carbon has only 3 (σ) bonding partners; So, carbons are $s+p+p=sp^2$ hybridized.

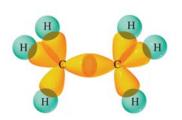



Only σ -bonding hybrid orbitals determine geometry by VSEPR.

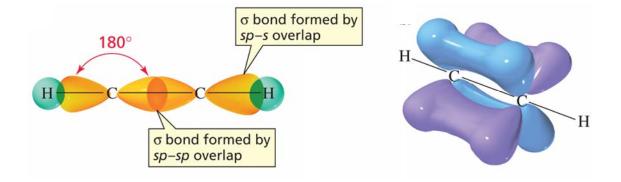
Geometry of Ethene (CH₂CH₂)




The two bonds of a double bond are not the same.



Free Rotation About Single Bonds, But Not Double Bonds



No orbital interactions that limit rotation.

Geometry of Ethyne (HCCH)

Carbons are sp-hybridized;

Ethyne (acetylene) is linear.

Interesting note: Rotation about triple bonds is actually okay;

Overlap between p orbitals is continuous enough through rotation.

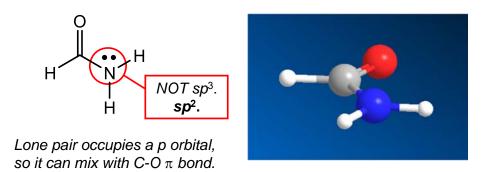
Summary of Hybridization and Shape

Sum of σ-bonds and lone pairs	Hybridization	π -bonds	shape
4	sp³	0	tetrahedral
3	sp ²	1	trigonal planar
2	sp	2	linear

So, for the two-dimensional molecule drawings below,

- (i) Give the hybridization of all non-H atoms;
- (ii) Re-draw the molecules to reflect a possible 3-D geometry.

Including Resonance in Geometry


What if a molecule can be described by multiple good (major) resonance structures?

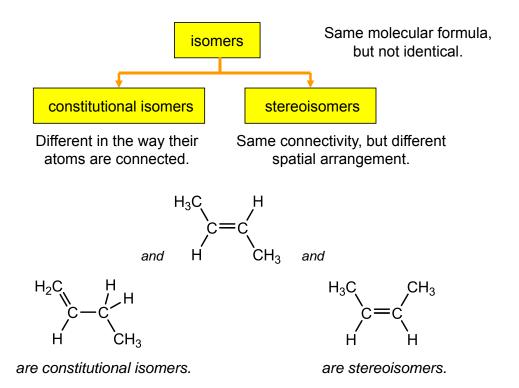
For each atom, the <u>lowest</u> hybridization state observed in major resonance structures is the correct one.

Example: What is hybridization on nitrogen atoms?

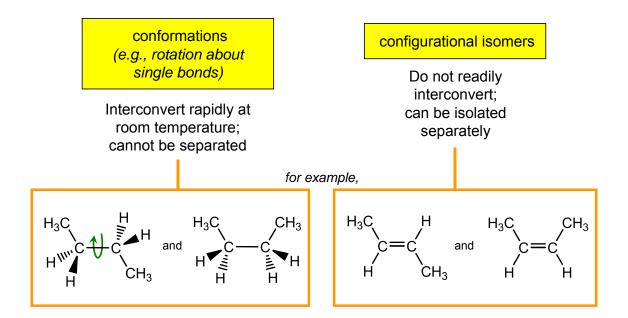
Answer: Both are sp2.

Nominally *sp*³-Hybridized Lone Pairs Adjacent to Multiple Bonds Switch to *p*

Oddly, this only works for nominally sp^3 atoms.



Last Week...


An important consequence:

even though they're connected the same.

Stereochemistry and Isomerism

Configurations and Conformations

Electrons Drive Acid-Base Reactions

Lewis Base: An electron-pair donor.

Lewis Acid: An electron-pair acceptor.

(Here, also a proton donor.)

Organic chemists illustrate flow of electrons in reactions using curved arrows. (Sometimes called "electron pushing".)

Electrons Drive Acid-Base Reactions

Lewis Base: An electron-pair donor.

Lewis Acid: An electron-pair acceptor.

(Here, also a proton donor.)

Organic chemists illustrate flow of electrons in reactions using curved arrows. (Sometimes called "electron pushing".)

B:
$$+$$
 $H-A$ \Longrightarrow $B-H$ $+$ A

base acid $Conjugate acid base$

(Bronsted-Lowry acids & bases are defined in terms of protons. Almost the same.)