Substituted Cyclohexanes

$$CH_3$$
 EH_3
 EH_3

$$\begin{array}{c} \text{axial} \\ \text{CH}_3 \\ \text{4} \\ \text{3} \\ \text{2} \end{array}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{4} \\ \text{5} \\ \text{6} \\ \text{I} \\ \text{H} \end{array}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{5} \\ \text{6} \\ \text{I} \\ \text{H} \end{array}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{3} \\ \text{2} \\ \text{II} \\ \text{equatorial} \\ \text{axial} \end{array}$$

These two chair conformations are not identical.

Which is more stable?

Conformations of Methylcyclohexane

axial methyl

multiple gauche interactions between methyl and cyclohexane ring make this conformer less stable

gauche

CH₃

H

equatorial methyl

no adverse interactions; **more** stable

$$\begin{array}{c|c} \text{anti} & H & 3 & H \\ H & CH_2 & 4 & 5 \\ H_3C & H & H \end{array}$$

Ĥ

Substituted Cyclohexanes

Another effect: 1,3-diaxial interactions are *destabilizing*.

Conformer with equatorial substituent doesn't have this problem.

The larger the group, the bigger the preference.

Naming Disubstituted Cycloalkanes

cis-substituted: Substituents on same side of ring.

trans-substituted: Substituents on opposite side of ring.

Multiply Substituted Cyclohexanes

Chair conformations flip to minimize total 1,3-diaxial interactions.

equatorial

conformations identical

''//CH3

Ĥ

CH₃ axial