Chemistry 2301

At-Home Solutions: Mechanism Practice Problems

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3

The heat (Δ) is a tip that we can start with E1/S_N1's first step: making a carbocation.

OH

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 $CH_$

The sodium carbonate base is strong enough to deprotonate the alcohol starting material; that wouldn't happen with an alcohol like ethanol (p K_a = 16), but it's possible in this case because of resonance stabilization of the conjugate base:

 Br^{Θ}

OCH₃

them S_N1 instead?

No. The first step I drew was on a primary (1°) bromide. Primary sites do substitution via S_N2 only. S_N1 would generate a primary cation intermediate, which would be too unstable to exist. The second substitution is at a secondary site, which could generate a secondary carbocation, but I don't like that carbocation very much (next page):

$$OH OH OH_3 OH OH_3$$

$$OH OH_3 OH_3$$

The carbocation ends up next to a partial positive charge from the carbonyl—not good. This wouldn't happen.

So, a bonus question—how might this mechanism be different if ethylene glycol (p K_a = 16) was used as the diol instead of catechol? (Answer at the end of this answer key.)

$$H_3C$$
 CH_3
 H
 OSO_3H
 H_3C
 CH_3
 H
 OSO_3H
 H_3C
 CH_3
 H
 OSO_3H
 H_3C
 CH_3
 H
 OSO_3H
 OSO_3H

$$H_3C$$
 CH_3 H_3C CH_3 H_4 O H

$$H_3C$$
 H_3C
 H_3C

Same process with the other resonance adduct...

$$H_3C$$
 H_3C
 H_3C

So earlier in this answer key I asked—how would ethylene glycol react differently from catechol in the second problem?

Sodium carbonate isn't basic enough to deprotonate ethylene glycol, so nucleophilic attack comes first: