
Ethers

Ethers are good Lewis bases/electron donors. Example: BH₃•THF (hydroboration reagent):

Crown Ethers

ion	ionic diameter	recognized by
Li ⁺	1.20 Å	[12]-crown-4
Na ⁺	1.80 Å	[15]-crown-5
K ⁺	2.66 Å	[18]-crown-6

Direct Conversion of Alcohols to Halides

$$R \xrightarrow{OH} \xrightarrow{HX} R$$

Not so great. E1/E2 compete with substitution.

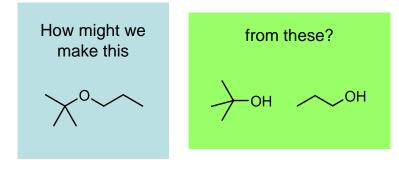
In the absence of pyridine, this reaction can retain stereochemistry.

These reactions:

- convert –OH into a good leaving group
- invert stereochemistry at carbon.

Tosylation of Alcohols

$$R - OH + CI - S - CH_3 \xrightarrow{pyridine} R - O - S - CH_3$$


$$p\text{-toluenesulfonyl chloride} \qquad or "ROTs" \\ (TsCl, or tosyl chloride) \qquad a tosylate$$

Tosylation Turns –OH Into an Excellent Leaving Group

Williamson Ether Synthesis

Ethers (though not epoxides) can be synthesized by reacting an alkoxide nucleophile with a good alkyl electrophile.

Example—From two alcohols:

Williamson Ether Synthesis

First, convert one alcohol to a good leaving group:

OH
$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 $CONVERTS alcohol to good leaving group$

Williamson Ether Synthesis

Second, combine to ylate with reactive alkoxide:

- Works well with a primary (1°) halide/tosylate;
- Not so well with 2° or 3° leaving groups; too much competing E2 elimination.