
# Reminder: Alkane Halogenation via Free-Radical Chain Reaction

#### **Selectivity in Radical Halogenation**

Radical halogenation is selective for the most substituted C-H.

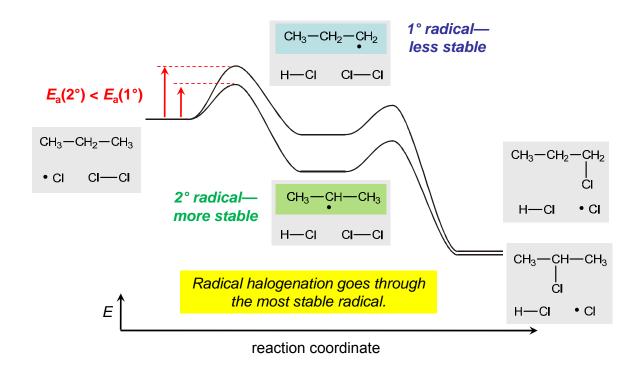
# More Substituted Radicals Are More Stable (by Hyperconjugation)





Two electrons decrease in energy, one electron increases in energy.

Net effect is stabilization.


Stability trend for  $R_3C^{\bullet}$ :  $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_3$ 

# **Bond Dissociation Enthalpies**

**BDE**: Enthalpy required to break a bond into component radicals  $(A - B \rightarrow A^{\bullet} + {}^{\bullet}B)$ 

| <u>Bond</u>                                      | BDE (kcal/mol) | <u>Bond</u>                           | BDE (kcal/mol) |
|--------------------------------------------------|----------------|---------------------------------------|----------------|
| CI—CI                                            | 58             | CH <sub>3</sub> —CI                   | 84             |
| H—CI                                             | 103            | CH <sub>3</sub> CH <sub>2</sub> —CI   | 81             |
| CH <sub>3</sub> —H                               | 104            | $(CH_3)_2CH$ — $CI$                   | 80             |
| CH <sub>3</sub> CH <sub>2</sub> —H               | 98             | $(CH_3)_3C$ — $CI$                    | 79             |
| (CH <sub>3</sub> ) <sub>2</sub> CH—H             | <b>95</b>      | CH <sub>3</sub> —Br                   | 70             |
| (CH <sub>3</sub> ) <sub>3</sub> C—H              | <b>91</b>      | CH <sub>3</sub> CH <sub>2</sub> —Br   | 68             |
| C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> —H | 88             | (CH <sub>3</sub> ) <sub>2</sub> CH—Br | 68             |
| CH <sub>2</sub> =CH-CH <sub>2</sub> -            | —H 86          | $(CH_3)_3C$ —Br                       | 65             |

#### **Selectivity in Radical Halogenation**



# **Selectivity in Radical Halogenation**

Bromination is even more selective than chlorination.

$$CH_{3}-CH_{2}-CH_{3} \xrightarrow{PV} CH_{3}-CH-CH_{3} + CH_{3}-CH_{2}-CH_{2}$$

$$60\% \qquad 40\%$$

$$CH_{3}-CH_{2}-CH_{3} \xrightarrow{PV} CH_{3}-CH-CH_{3} \qquad CH_{3}-CH_{2}-CH_{2}$$

$$R_{3}-CH_{2}-CH_{3} \xrightarrow{PV} CH_{3}-CH-CH_{3} \qquad CH_{3}-CH_{2}-CH_{2}$$

$$R_{3}-CH_{2}-CH_{3} \xrightarrow{PV} R_{3}-CH-CH_{3} \qquad CH_{3}-CH_{2}-CH_{2}$$

$$R_{3}-CH_{2}-CH_{3} \xrightarrow{PV} R_{3}-CH_{2}-CH_{2}$$

$$R_{3}-CH_{2}-CH_{2} \xrightarrow{PV} R_{3}-CH_{2}-CH_{2}$$

$$R_{3}-CH_{2}-CH_{2}-CH_{2}$$

$$R_{3}-CH_{2}-CH_{2}-CH_{2}$$

$$R_{3}-CH_{2}-CH_{2}$$

#### **Selectivity in Radical Halogenation**

• Halogenation at allylic, benzylic sites is particularly preferred.

Resonance is usually more stabilizing than substitution. This explains low BDEs of allylic, benzylic C-H bonds.

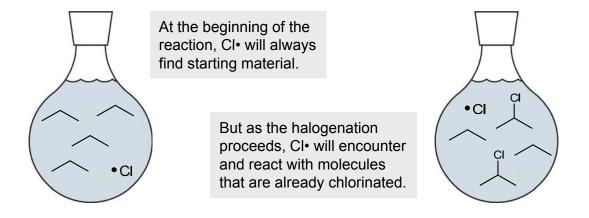
# **Bond Dissociation Enthalpies**

**BDE**: Enthalpy required to break a bond into component radicals  $(A - B \rightarrow A^{\bullet} + {}^{\bullet}B)$ 

| <u>Bond</u>                                      | BDE (kcal/mol) | <u>Bond</u>                                                                   | BDE (kcal/mol) |
|--------------------------------------------------|----------------|-------------------------------------------------------------------------------|----------------|
| CI—CI                                            | 58             | CH <sub>3</sub> —CI                                                           | 84             |
| H—CI                                             | 103            | CH <sub>3</sub> CH <sub>2</sub> —CI                                           | 81             |
| CH <sub>3</sub> —H                               | 104            | (CH <sub>3</sub> ) <sub>2</sub> CH—CI<br>(CH <sub>3</sub> ) <sub>3</sub> C—CI | 80<br>79       |
| CH <sub>3</sub> CH <sub>2</sub> —H               | 98             | (Cl 1 <sub>3</sub> ) <sub>3</sub> C—Cl                                        | 19             |
| $(CH_3)_2CH$ —H                                  | 95             | CH <sub>3</sub> —Br                                                           | 70             |
| $(CH_3)_3C$ —H                                   | 91             | CH <sub>3</sub> CH <sub>2</sub> —Br                                           | 68             |
| C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> —H | 88             | (CH <sub>3</sub> ) <sub>2</sub> CH—Br                                         | 68             |
| CH <sub>2</sub> =CH-CH <sub>2</sub> -            | –H 86          | $(CH_3)_3C$ —Br                                                               | 65             |

#### Allylic and Benzylic Bromination with NBS

*Problem*: Br<sub>2</sub> also reacts with double bonds.


$$Br_2$$
  $Br_2$   $Br_3$   $Br_4$   $Br_5$   $Br_5$ 

Solution: Use a different reagent (w/ the same mechanism).

- NBS also halogenates benzylic positions.
- Will not halogenate unactivated C-H's.
- Requires either light (hv) or a chemical radical source (e.g., AIBN) to provide R•.

# **Multiple Halogenations**

*Problem*: Once one C-H has been converted to a C-X, another one can be. This can lead to a mixture of products.



Solution: Monohalogenated product can be made by incomplete reaction, followed by purification of product from starting material.

# **Multiple Halogenations**

Solution: Multiply halogenated products can also be made, as long as the pattern of selectivity allows it.

$$rac{\operatorname{Br}_2}{h_{\mathrm{V}}}$$

...is possible (because of selectivity for benzylic position), but...

$$\begin{array}{c}
CI_2 \\
hv
\end{array}$$

...is not possible (would not happen selectively).