Nuclear Magnetic Resonance Spectroscopy Depends on Nuclear Spin

<u>Nucleus</u>	<u>Spins</u>	Isotope <u>Abundance</u>
¹ H	±½	99.9%
¹² C	0	98.9%
¹³ C	±½	1.1%
¹⁹ F	±½	100%
³¹ P	±1/2	100%

¹³C NMR measures only a small fraction of naturally occurring carbon.

¹³C NMR: A Problem With Coupling

¹H-Decoupled ¹³C NMR

¹H-Decoupled ¹³C NMR

¹³C NMR, ¹H (broadband) decoupled

Infrared (IR) Spectroscopy

- Used to identify specific functional groups
- No information on total structure, connectivity
- Measures absorption of light by vibrational modes of specific bonds (and combinations of bonds)

IR Spectroscopy

IR Spectroscopy: Methods

Instrument varies wavelength of light to match vibrational frequency of bonds.

 $0 = \begin{cases} 0 & 0 \\ 0 & 0 \\ -2\lambda & -1\lambda & 0 & +1\lambda & +2\lambda \\ \delta, cm & 0 \end{cases}$

Okay, I lied. Modern instruments excite all wavelengths at once, deconvolute with Fourier transform. Molecules are mostly transparent to IR light, but when frequency matches a bond vibration, light doesn't pass through.

IR Spectroscopy: Quantum Limitations

IR-absorbing transitions are allowed only when dipole moment changes during vibrational motion.

Modes can be combinations of bond vibrations. (Modes mix.)

As a result, IR instruments sometimes purged with N_2 to get rid of CO_2 .

equency (cm ⁻¹)	Functiona	l Group	Comments
3300	alcohol amine, amide alkyne	O—H N—H ≡C—H	always broad may be broad, sharp, or broad with spikes always sharp, usually strong
3000	alkane	-c-н	just below 3000 cm ⁻¹
	alkene	=c < H	just above 3000 cm ⁻¹
	acid	о-н	very broad
2200	alkyne - nitrile	-C≡C- -C≡N	just below 2200 cm ⁻¹ just above 2200 cm ⁻¹
1710 (very strong)	carbonyl	>c=0	ketones, aldehydes, acids esters higher, about 1735 cm ⁻¹ conjugation lowers frequency amides lower, about 1650 cm ⁻¹
1660	alkene	_c=c<	conjugation lowers frequency aromatic C=C about 1600 cm ⁻¹
	imine	_C=N_	stronger than C=C
	amide	>c=o	stronger than C=C (see above)

Much more than NMR, IR is used by matching spectrum peaks to a table.

IR-Allowed C-H Vibrations

Characteristic Features in IR: Alkanes

Characteristic Features in IR: Alkenes

Characteristic Features in IR: Alkynes

C-H stretch ~ 3300 cm⁻¹.

C≡C stretch ~ 2150 cm⁻¹, but only when asymmetric.

Characteristic Features in IR: Alcohols

O-H stretch 3650-3600 cm⁻¹ if dilute (no H-bonding).

O-H stretch 3400-3300 cm⁻¹ if H-bonded.

Characteristic Features in IR: Carbonyls

C=O stretch 1800-1600 cm⁻¹; typically sharp and strong. *Very* diagnostic.

Frequency strongly affected by substituents:

R

inductive effect raises bond frequency

resonance effect lowers bond frequency