Chemistry 2301

Workshop 1 Solutions Drawing Organic Molecules

1.

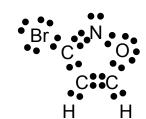
atom	electronic configuration	# of valence electrons
Н	1s ¹	1
С	$1s^22s^22p^2$	4
N	$1s^22s^22p^3$	5
0	$1s^22s^22p^4$	6
S	$1s^22s^22p^63s^23p^4$	6
Br	$1s^22s^22p^63s^23p^64s^23d^{10}4p^5$	7

One easy mnemonic for the number of valence electrons: although it is technically equal to the total number of electrons in the highest orbital level [Br: (2 in 4s) + (5 in 4p) = 7], you can just look at the group number in the periodic table [Br is in Group 7].

2.

Lewis *dot* structures

Lewis dash-bond structures


ammonia (NH₃)

formaldehyde (H₂CO)

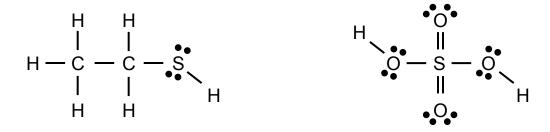
$$C = 0$$

dibromomethane (CH₂Br₂)

3-bromo-1,2-oxazole (C₃H₂NOBr)

Most importantly, each of the atoms heavier than H is the structures above has 8 electrons associated with it (either as lone pairs or shared in bonds). Each H has only 2 electrons (almost always shared in a bond).

3.


CH₃NO

$$C_4H_6O$$

(+ many more possibilities)

Line-angle structures:

4.

ethanethiol (added to natural gas so that it smells; obeys octet rule) sulfuric acid (disobeys octet rule; S has 12 electrons in valence shell) In a way, sulfur obeys its own "octet rule", where the number of available orbital spots for electrons can be 8, 10, or 12.