Workshop 13 Multistep Reaction Mechanisms

Diethylamine $[(CH_3)_2NH]$ is a great nucleophile, and alkyl halides like methyl iodide (CH_3I) add to it readily via the S_N2 mechanism. One interesting characteristic of this reaction, though, is that it is impossible to make the reaction stop at just one addition; no matter how the reaction is run, a second molecule of CH_3I will add to nitrogen after the first.

$$H_3C$$
 $N-H$
 $+$
 H_3C-I
 $N=H$
 Ma_2CO_3
 Ma_2CO_3

Draw a multistep mechanism that shows how two molecules of CH_3 I add successively to each molecule of $(CH_3)_2NH$. Because this reaction has the elements of both an S_N2 and an acid-base reaction, your mechanism will require a base. In a chemistry lab, this reaction would be run in the presence of a non-nucleophilic base (like the Na_2CO_3 shown above)—so use this base in your mechanism—but solvent or diethylamine itself could also act as the base.