NAME \qquad

ID \#

ORGANIC CHEMISTRY II (2302)

1:30 pm - 3:30 pm, May 12, 2016
Final Exam

You will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Tuesday, May $17^{\text {th }}$ at 11 AM. Exams that are not picked up within two weeks will be disposed of.

Tables of amino acid and nucleic acid structures, a chart of reaction conditions, and a periodic table are attached to the back of this exam as an aid. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

When the exam begins, please write your name at the top of the next page.
You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.
\qquad
Scoring: \qquad / 32
2. \qquad / 17
3. \qquad / 6
4. \qquad / 16
5. \qquad / 20
6. \qquad / 38
7. \qquad / 32
8. \qquad / 11

9 \qquad / 8
10. \qquad / 20

Total Score: \qquad / 200

1. (32 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced equally, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". Circle one answer only.

mixture of:

2. Dissolve in a mixture of $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$ and $\xrightarrow{\mathrm{CHCl}_{3}}$
3. Discard $\mathrm{H}_{>} \mathrm{O}$ laver.
NEITHER

Δ

BOTH
(equally)

NEITHER

$\xrightarrow{\substack{\text { 1. LDA, }-78^{\circ} \mathrm{C} \\ \text { THF }}}$
2.

2. (17 pts) Benzene is a prototypical aromatic molecule. Benzene's aromaticity has sometimes been explained s by using a molecular orbital diagram.
a. On the energy diagram below, draw a molecular orbital (MO) diagram for the conjugated π orbitals in benzene.

- Draw all orbital energy levels as horizontal lines;
- Fill your orbitals with the appropriate number of electrons.
b. In the boxes on the right, draw the shapes of benzene's LUMO, HOMO, and lowest-energy molecular orbital as combinations of atomic orbital lobes, viewed from the top of the molecule. If there is more than one LUMO, HOMO or lowest-energy orbital, just draw one. I have drawn the framework of benzene in each box; draw each orbital right on top of that.

shape of LUMO:

shape of HOMO:

shape of lowest-energy MO:

 example $\mathrm{MO}\left(\right.$ for $\mathrm{C}_{2} \mathrm{H}_{4}$):
c. On your MO diagram on the previous page, draw a vertical arrow to illustrate an electronic transition that could be observed as an absorption peak in the UV/vis spectrum of benzene. Label the arrow " λ ".
d. How would you expect the optical absorbance of benzene to compare to that of naphthalene (shown at right)? Would you expect

naphthalene
$\lambda_{\max }($ naphthalene $)$ to be $>, \quad<, \quad$ or $=\quad \lambda_{\max }$ (benzene)? (Circle one.)
e. Double bond hydrogenation is always exothermic-or, put another way, $\Delta H_{\text {hyd }}$ is always negative. The Lewis structure of benzene is drawn with three double bonds, and exhaustive hydrogenation of benzene would involve three consecutive additions of H_{2}. How does $\Delta H_{\text {hyd }}$ [benzene] compare to hydrogenation of a three typical alkenes, like ethylene? Is
$\Delta H_{\text {hyd }}[$ benzene $]>,<$, or $=3 \times \Delta H_{\text {hyd }}[$ ethylene]? (Circle one.)
3. (6 pts) For each of the following molecules, circle whether the molecule is aromatic, antiaromatic, or neither.
AROMATIC

ANTI-AROMATIC

NEITHER

AROMATIC

ANTI-AROMATIC

NEITHER
4. (16 pts) Each of the reactions below is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, circle those conditions. If both sets of conditions would accomplish the reaction, circle "BOTH". If neither set of reaction conditions would succeed, circle "NEITHER". Circle one answer only.

2.

would work

5. (20 pts) For each of the reactions below, fill in the empty box corresponding to reagents or product. Give only one answer in each box. For reactions that you expect to yield multiple products, draw one major product. For reactions that yield multiple enantiomers, draw only one enantiomer in the box, and include the note "+ enantiomer".

6. (38 pts) Draw a mechanism (using "electron pushing") for each of the reactions shown below. Draw each mechanistic step explicitly; don't cheat by combining multiple processes in a single step, or by taking shortcuts. Use only the molecules shown in the problem.

Mechanism:

Mechanism:

Mechanism:
7. (32 pts) Each of the syntheses shown below can be accomplished in a few steps. For each synthesis, fill in the empty boxes with any appropriate reagents (or sets of reagents) and synthetic intermediates.

On the next page:

\square
8. (11 pts) The acyclic structure of D-altrose, an epimer of glucose, is shown below as a Fischer projection.
a. Acyclic D-altrose equilibrates with a equilibrates with a
cyclic, 6 -memberedring, α-anomer altropyranose form. Draw the cyclic α anomer as a chair
conformer in the box at anomer as a chair
conformer in the box at right.

cyclic α-D-altropyranose (chair conformer)

cyclic α-D-altropyranose
(chair conformer)

9. (8 pts)
a. Sort the three amino acids serine (Ser), arginine (Arg), and aspartic acid (Asp) in order of increasing isoelectric point (pI). Write their three-letter abbreviations in the appropriate boxes below.

arginine (Arg)
aspartic acid
(Asp) (Asp) (Asp)

lowest

 pl
highest
pl
b. If these three amino acids were analyzed by ion exchange chromatography, using an anionic column subjected to a solvent gradient of gradually increasing pH , what would be the order of elution of these three amino acids?

10. (20 pts)
a. For each of the polymer syntheses proposed below, draw the polymer product using bracket notation (" $[-\mathrm{M}-]_{n}$ "). If n is known, define it. If there is a part of the polymer structure that isn't known (e.g., the initiating or terminating group), draw this as a squiggle in your structure.

b. In the box below, draw a mechanism for the initiation step and the first propagation step in the formation of polymer A above, using "electron pushing".

Mechanism:

c. If half as much styrene monomer were used in the synthesis above, the average product "polymer B" molecule would be half as long. How would the mobility of polymer B in gel permeation chromatography (GPC) relate to polymer A? Would polymer B elute

earlier than , later than or at the same time as

polymer A? (Circle one.)

Final Exam Chart of Reaction Conditions

Final Exam Chart of Amino Acids (in Alphabetical Order)

alanine
(Ala, A)

arginine (Arg, R)

asparagine (Asn, N)

aspartic acid (Asp, D)

cysteine (Cys, C)

isoleucine (Ile, I)
histidine (His, H)

proline
(Pro, P)
phenylalanine
(Phe, F)

serine
(Ser, S)

threonine (Thr, T)

tryptophan
(Trp, W)

(Tyr, Y)

Final Exam Chart of Nucleic Acid Bases (in Alphabetical Order)

adenine
(A)

cytosine
(C)

guanine
(G)

thymine
(T)

uracil
(U)
Periodic Table of the Elements
California Standards Test

	$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
1		$\begin{gathered} 2 \\ 2 A \\ \hline \end{gathered}$						Key					$\begin{aligned} & 13 \\ & 3 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \\ & \hline \end{aligned}$	2 He Helium 4.00
2	$\begin{gathered} \hline 3 \\ \mathbf{L i} \mathbf{L i t h i u m} \\ 6.94 \\ \hline \end{gathered}$												5 \mathbf{B} Boron 10.81	$\underset{\substack{\text { Carbon } \\ 12.01}}{\mathbf{C}}$		$\begin{gathered} \hline 8 \\ \mathbf{O} \\ \text { Oxygen } \\ 16.00 \\ \hline \end{gathered}$	$\stackrel{\substack{9 \\ \text { Fluorine } \\ 19.00}}{\mathbf{F}}$	${ }^{10}$ Neon 20.18
3	11 Na Sodium 22.99		$\begin{gathered} 3 \\ 3 B \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 4 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 5 B \\ \hline \end{gathered}$	22.99 6 6 6 B		rage atom 8	ic mass* 9 -8 B	10	$\begin{aligned} & 11 \\ & 1 B \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 2 \mathrm{~B} \\ & \hline \end{aligned}$		$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { Silicon } \\ 28.09 \end{gathered}$		$\begin{array}{r} \hline 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.07 \\ \hline \end{array}$	$\begin{gathered} 17 \\ \text { Cliorine } \\ \text { Cl } \\ \hline 5.45 \\ \hline \end{gathered}$	
4		$\begin{gathered} 20 \\ \text { Ca } \\ \text { Calcium } \\ 40.08 \\ \hline \end{gathered}$		$\begin{gathered} 22 \\ \begin{array}{c} \text { Titanium } \\ \text { Tint. } \end{array} \\ \hline 47.87 \end{gathered}$				$\begin{gathered} 26 \\ \text { Fe } \\ \text { Iron } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { Cobalt } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \mathbf{N i} \\ \begin{array}{c} \text { Nickel } \\ 58.69 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { Copper } \\ 63.55 \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Zn } \\ & \text { Znin } \\ & 65.39 \\ & \hline \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ \text { Gallium } \\ 69.72 \\ \hline \end{gathered}$					$\begin{gathered} 36 \\ \begin{array}{c} \text { Krypton } \\ \text { Kr } \\ 83.80 \end{array} \end{gathered}$
5			$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yttrium } \\ 88.91 \\ \hline \end{gathered}$										$\begin{gathered} \hline 49 \\ \text { In } \\ \text { Indium } \\ 114.82 \\ \hline \end{gathered}$				$\begin{array}{\|c\|} \hline 53 \\ \text { I } \\ \text { lodine } \\ 126.90 \\ \hline \end{array}$	$\begin{gathered} \hline 54 \\ \text { Xe } \\ \text { Xenon } \\ 131.29 \\ \hline \end{gathered}$
6	55 Cs Cesium 132.91								77 $\mathbf{I r}$ lidium lide.22 102	78 $\mathbf{P l}$ $\mathbf{P l a t i n u m ~}$ 195.08	79 Au Gold 196.97		81 TI $\begin{array}{c}\text { Thallium } \\ 204.38\end{array}$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \\ & \text { Lead } \\ & 207.2 \\ & \hline \end{aligned}$				$\begin{aligned} & \begin{array}{l} 86 \\ \text { Rn } \\ \text { Radon } \\ (222) \end{array} \\ & \hline \end{aligned}$
7							${ }^{107}$ Bohrium (264)	108 Hs (269) Hassium (269)										
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.					58 Ce Cerium 140.12					63 Eu Europium 151.96							70 $\mathbf{Y b}$ Y Yterbium 173.04	Li Lutetium 174.97 10
					90 Th Thorium 232.04	91 $\mathbf{P a}$ Protactinium 231.04$\|$	$\xrightarrow[\begin{array}{c}\text { Uranium } \\ 238.03\end{array}]{\substack{92 \\ \hline}}$	93 $\mathbf{N p}$ Neptunium (237)	94 $\mathbf{P u}$ Plutonium (244)	$\underset{\substack{\text { Americium } \\(243)}}{\substack{95 \\ \text { Am } \\ \hline}}$	$\begin{gathered} 96 \\ \text { Cm } \\ \substack{\text { Curium } \\ (247)} \\ \hline \end{gathered}$	97 Bk Berkelium (247)	$\underset{\substack{98 \\ \text { Californium } \\(251)}}{ }$	99 Esinteinium (252)	$\begin{gathered} 100 \\ \text { Fm } \\ \text { Fermium } \\ (257) \\ \hline \end{gathered}$	$\substack{101 \\ \text { Md } \\ \text { Mendelevium } \\ (258)}$	$\begin{gathered} 102 \\ \text { No } \\ \begin{array}{c} \text { Nobelium } \\ (259) \end{array} \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|}\hline 103 \\ \mathbf{L r} \\ \text { Lawrencium } \\ \text { (262) }\end{array}\right]$

