NAME

ID # _____

ORGANIC CHEMISTRY II (2302)

1:30 pm - 3:30 pm, May 12, 2016

Final Exam

You will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Tuesday, May 17th at 11 AM. Exams that are not picked up within two weeks will be disposed of.

Tables of amino acid and nucleic acid structures, a chart of reaction conditions, and a periodic table are attached to the back of this exam as an aid. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

1. (32 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced <u>equally</u>, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". **Circle one answer only.**

- 2. (17 pts) Benzene is a prototypical aromatic molecule. Benzene's aromaticity has sometimes been explained s by using a molecular orbital diagram.
 - a. On the energy diagram below, draw a molecular orbital (MO) diagram for the conjugated π orbitals in benzene.
 - Draw all orbital energy levels as horizontal lines;
 - Fill your orbitals with the appropriate number of electrons.
 - b. In the boxes on the right, draw the shapes of benzene's LUMO, HOMO, and lowest-energy molecular orbital as combinations of atomic orbital lobes, viewed from the top of the molecule. If there is more than one LUMO, HOMO or lowest-energy orbital, just draw one. I have drawn the framework of benzene in each box; draw each orbital right on top of that.

shape of HOMO:

- c. On your MO diagram on the previous page, draw a vertical arrow to illustrate an electronic transition that could be observed as an absorption peak in the UV/vis spectrum of benzene. Label the arrow " λ ".
- d. How would you expect the optical absorbance of benzene to compare to that of naphthalene (shown at right)? Would you expect

naphthalene

e. Double bond hydrogenation is always exothermic—or, put another way, ΔH_{hyd} is always negative. The Lewis structure of benzene is drawn with three double bonds, and exhaustive hydrogenation of benzene would involve three consecutive additions of H₂. How does ΔH_{hyd} [benzene] compare to hydrogenation of a three typical alkenes, like ethylene? Is

 $\Delta H_{hyd}[benzene] > , < , or = 3 \times \Delta H_{hyd}[ethylene]? (Circle one.)$

3. (6 pts) For each of the following molecules, circle whether the molecule is aromatic, antiaromatic, or neither.

4. (16 pts) Each of the reactions below is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, circle those conditions. If both sets of conditions would accomplish the reaction, circle "BOTH". If neither set of reaction conditions would succeed, circle "NEITHER". **Circle one answer only.**

5. (20 pts) For each of the reactions below, fill in the empty box corresponding to reagents or product. Give only one answer in each box. For reactions that you expect to yield multiple products, draw one major product. For reactions that yield multiple enantiomers, draw only one enantiomer in the box, and include the note "+ enantiomer".

6. (38 pts) **Draw a mechanism** (using "electron pushing") for each of the reactions shown below. Draw each mechanistic step explicitly; don't cheat by combining multiple processes in a single step, or by taking shortcuts. Use only the molecules shown in the problem.

7. (32 pts) Each of the syntheses shown below can be accomplished in a few steps. For each synthesis, fill in the empty boxes with any appropriate reagents (or sets of reagents) and synthetic intermediates.

 $\overline{C}H_3$

- 8. (11 pts) The acyclic structure of D-altrose, an epimer of glucose, is shown below as a Fischer projection.
 - a. Acyclic D-altrose H、 equilibrates with a cyclic, 6-membered-HOring, α-anomer Нaltropyranose form. H-Draw the cyclic α -Hanomer as a chair conformer in the box at right.

cyclic α -D-altropyranose (chair conformer) -OH CH₂OH

b. What is the timescale of this equilibrium? Does it take place spontaneously over

/0

٠H

-OH

-OH

minutes? weeks? decades? (Circle one.) or

c. The equilibrium above is responsible for **mutarotation**—the process by which α and β anomers in a monosaccharide equilibrate with each other. By comparison, how quickly do disaccharide, C1 glycosides of altrose undergo mutarotation? Do altrose glycosides exchange α and β anomers

> faster slower at the same rate or

compared to monosaccharides? (Circle one.)

- 9. (8 pts)
- a. Sort the three amino acids serine (Ser), arginine (Arg), and aspartic acid (Asp) in order of increasing isoelectric point (pI). Write their three-letter abbreviations in the appropriate boxes below.

b. If these three amino acids were analyzed by ion exchange chromatography, using an anionic column subjected to a solvent gradient of gradually increasing pH, what would be the order of elution of these three amino acids?

10. (20 pts)

a. For each of the polymer syntheses proposed below, draw the polymer product using bracket notation (" $[-M-]_n$ "). If *n* is known, define it. If there is a part of the polymer structure that isn't known (*e.g.*, the initiating or terminating group), draw this as a squiggle in your structure.

b. In the box below, draw a mechanism for the initiation step and the first propagation step in the formation of polymer A above, using "electron pushing".

Mechanism:		

c. If half as much styrene monomer were used in the synthesis above, the average product "polymer **B**" molecule would be half as long. How would the mobility of polymer **B** in gel permeation chromatography (GPC) relate to polymer **A**? Would polymer **B** elute

earlier than , later than *or* at the same time as

polymer A? (*Circle one.*)

Final Exam Chart of Reaction Conditions

California Standards Test

Chemistry Reference Sheet

Periodic Table of the Elements

18 8A 2	Helium 4.00	10 Ne on 20.18	18 Ar	Argon 39.95	36	Krypton	83.80	54	Xenon	131.29	86	Rn	Radon (222)					71	Lu	Lutetium 174.97	103	Ļ	Lawrencium (262)	
	17 7A	9 Fluorine 19.00	17 C	Chlorine 35.45	35	Br Bromine	79.90	- 23	lodine	126.90	85	At	Astatine (210)					20	ЧY	Ytterbium 173.04	102	No No	Nobelium (259)	
	16 6A	8 O Oxygen 16.00	بې 16	Sulfur 32.07	34	Selenium	78.96	52	Tellurium	127.60	84	Ъо	Polonium (209)					69	ЦД	Thulium 168.93	101	Md	Mendelevium (258)	
	15 5A	7 N Nitrogen 14.01	15 D	Phosphorus 30.97	33	AS Arsenic	74.92	51 2	SD Antimony	121.76	83	<u>B</u>	Bismuth 208.98					68	ц	Erbium 167.26	100	Fm	Fermium (257)	
	14 4A	6 Carbon 12.01	14 Si	Silicon 28.09	32	Ge Germanium	72.61	50	ר ב	118.71	82	Ъb	Lead 207.2					67	Ро	Holmium 164.93	66	Es	Einsteinium (252)	
	13 3A	5 B Boron 10.81	13 A I	Aluminum 26.98	31	Ga llium	69.72	49	LD Indium	114.82	81	F	Thallium 204.38					66	D	Dysprosium 162.50	98	Ç	Californium (251)	
			-	12 2B	30	Zn Zinc	65.39	48	Cadmium	112.41	80	Hg	Mercury 200.59					65	Ч	Terbium 158.93	97	BĶ	Berkelium (247)	
ey mic number			= = =	29	Copper	63.55		Ag Silver	107.87	62	Au	Gold 196.97					64	Gd	Gadolinium 157.25	96	Cm	Curium (247)		
				10	28	N ickel	58.69	46	Palladium	106.42	82	£	Platinum 195.08					63	Ш	Europium 151.96	95	Am	Americium (243)	
	omic number ment symbol ment name	nic mass*	9 	27	Cobalt Cobalt	58.93	45	Rhodium Bhodium	102.91	<i>LL</i>	L	Iridium 192.22	109	Mt Meitnerium	(268)		62	Sm	Samarium 150.36	94	Pu	Plutonium (244)		
		erage aton	∞	26	Fe Iron	55.85	44	Ruthenium	101.07	92	0s	Osmium 190.23	108	HS Hassium	(269)		61	Рп	Promethium (145)	93	dN	Neptunium (237)		
	Hoto X		ية ال	7 7B	25	Mn Manganese	54.94	43 43	I C Technetium	(98)	22	Re	Rhenium 186.21	107	Bh Bohrium	(264)		60	PQ	Neodymium 144.24	92	D	Uranium 238.03	
	-11- Sodiur	55.98	6B 6B	24	Chromium Chromium	52.00	42	Molybdenum	95.94	74	≥	Tungsten 183.84	106	Sg Seaborgium	(266)		59	Pr	Praseodymium 140.91	91	Ра	Protactinium 231.04		
				5 5B	23	V Vanadium	50.94	41	Niobium	92.91	73	Та	Tantalum 180.95	105	Db Dubnium	(262)		58	S	Cerium 140.12	06	Тh	Thorium 232.04	
				4 4 B	22	Ti Titanium	47.87	40	Zirconium	91.22	72	Ŧ	Hafnium 178.49	104	R therfordium	(261)				nen				
			а ЗВ зВ	21	Scandium Scandium	44.96	39	Yttrium	88.91	57	La	Lanthanum 138.91	89	AC Actinium	(227)			entheses, th	anmeses, u lass of the					
	2A 2A	4 Beryllium 9.01	12 Ma	Magnesium 24.31	20	Calcium Calcium	40.08	38	Strontium	87.62	56	Ba	Barium 137.33	88	Radium Radium	(226)	er is in par te atomic r isotope.							
1 1 1	Hydrogen 1.01	3 Lithium 6.94	÷ S	Sodium 22.99	19	Potassium	39.10	37	Rubidium Rubidium	85.47	55	S	Cesium 132.91	87	Fr Francium	(223)	If this num it refers to most stabl							
	-	N	c	0		4			ŝ			G)							*				

Copyright © 2008 California Department of Education