In-Class Exercise: Electrophilic Aromatic Substitution Mechanisms

In lecture, we drew the mechanism by which toluene reacts with NO₂⁺ and ⁻OSO₃H to generate *ortho*- and *meta*-substituted electrophilic addition products. On your own,

- Draw a mechanism for the formation of *para*-nitrotoluene from this reaction.
- Explain why this para-substituted product is favored, by illustrating how the intermediate carbocation in the mechanism is stabilized by the methyl group.

$$CH_3$$
 HNO_3
 H_2SO_4
 NO_2